A more comprehensive solution would use E820 enumeration, but we
are unlikely to ever care that much, as we intend to use demand
paging on microcontrollers and not PC-like hardware. This is
really to just prevent QEMU from crashing.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This is only needed if the base address of SRAM doesn't
have the same alignment as the base address of the virtual
address space.
Fix the calculations on X86 where this is the case.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This adds the correct compiler and linker flags to
support software floating point operations. The flags
need to be added to TOOLCHAIN_*_FLAGS for GCC to find
the correct library (when calling GCC with
--print-libgcc-file-name).
Note that software floating point needs to be turned
on for Newlib. This is due to Newlib having floating
point numbers in its various printf() functions which
results in floating point instructions being emitted
from toolchain. These instructions are placed very
early in the functions which results in them being
executed even though the format string contains
no floating point conversions. Without using CONFIG_FPU
to enable hardware floating point support, any calls to
printf() like functions will result in exceptions
complaining FPU is not available. Although forcing
CONFIG_FPU=y with newlib is an option, and because
the OS doesn't know which threads would call these
printf() functions, Zephyr has to assume all threads
are using FPU and thus incurring performance penalty as
every context switching now needs to save FPU registers.
A compromise here is to use soft float instead. Newlib
with soft float enabled does not have floating point
instructions and yet can still support its printf()
like functions.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Currently, zefi.py takes host GCC OBJCOPY as
default. Fixing the script to use CMAKE_C_COMPILER
and CMAKE_OBJCOPY.
Fixes: #27047
Signed-off-by: Spoorthy Priya Yerabolu <spoorthy.priya.yerabolu@intel.com>
The only two supported operations for data caches in the cache framework
are currently arch_dcache_flush() and arch_dcache_invd().
This is quite restrictive because for some architectures we also want to
control i-cache and in general we want a finer control over what can be
flushed, invalidated or cleaned. To address these needs this patch
expands the set of operations that can be performed on data and
instruction caches, adding hooks for the operations on the whole cache,
a specific level or a specific address range.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
The new APIs are not only dealing with cache flushing. Rename the
Kconfig symbol to CACHE_MANAGEMENT to better reflect this change.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
The kconfig options to configure the cache flushing framework are
currently living in the arch-specific kconfigs of ARC and X86 (32-bit)
architectures even though these are defining the same things.
Move the common symbols in one place accessible by all the architectures
and create a menu for those.
Leave the default values in the arch-specific locations.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
Firmware implementing the PSCI functions described in ARM document
number ARM DEN 0022A ("Power State Coordination Interface System
Software on ARM processors") can be used by Zephyr to initiate various
CPU-centric power operations.
It is needed for virtualization, it is used to coordinate OSes and
hypervisors and it provides the functions used for SMP bring-up such as
CPU_ON and CPU_OFF.
A new PSCI driver is introduced to setup a proper subsystem used to
communicate with the PSCI firmware, implementing the basic operations:
get_version, cpu_on, cpu_off and affinity_info.
The current implementation only supports PSCI 0.2 and PSCI 1.0
The PSCI conduit (SMC or HVC) is setup reading the corresponding
property in the DTS node.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
Increased stacks required for RISC-V 64-bit CI to pass. Most of these
were catched by the kernel stack sentinel.
The CMSIS stacks are for programs in samples/portability.
Signed-off-by: Martin Åberg <martin.aberg@gaisler.com>
The CONFIG_FLOAT_HARD config previously enabled the C (compressed)
ISA extensions (CONFIG_COMPRESSED_ISA). This commit removes that
dependency.
Signed-off-by: Martin Åberg <martin.aberg@gaisler.com>
Until now, any attempts to call printk prior to early serial init has
caused page faults due to the device not being mapped yet. Add static
variable to track the pre-init status, and instead of page faulting
just suppress the characters and log a warning right after init to
give an indication that output characters have been lost.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Using newlibc with AArch64 is causing an alignement fault in
z_bss_zero() when the code is run on real hardware (on QEMU the problem
is not reproducible).
The main cause is that the memset() function exported by newlibc is
using 'DC ZVA' to zero out memory.
While this is often a nice optimization, this is causing the issue on
AArch64 because memset() is being used before the MMU is enabled, and
when the MMU is disabled all data accesses will be treated as
Device_nGnRnE.
This is a problem because quoting from the ARM reference manual: "If the
memory region being zeroed is any type of Device memory, then DC ZVA
generates an Alignment fault which is prioritized in the same way as
other alignment faults that are determined by the memory type".
newlibc tries to be a bit smart about this reading the DCZID_EL0
register before deciding whether using 'DC ZVA' or not. While this is a
good idea for code running in EL0, currently the Zephyr kernel is
running in EL1. This means that the value of the DCZID_EL0 register is
actually retrieved from the HCR_EL2.TDZ bit, that is always 0 because
EL2 is not currently supported / enabled. So the 'DC ZVA' instruction is
unconditionally used in the newlibc memset() implementation.
The "standard" solution for this case is usually to use a different
memset routine to be specifically used for two cases: (1) against IO
memory or (2) against normal memory but with MMU disabled (which means
all memory is considered device memory for data accesses).
To fix this issue in Zephyr we avoid calling memset() when clearing the
bss, and instead we use a simple loop to zero the memory region.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
In rare cases when a thread may overflow its stack, the
core will not report a Stacking Error. This is the case
when a large stack array is created, making the PSP cross
beyond the stack guard; in this case a MemManage fault
won't cause a stacking error (but only a Data Access
Violation error). We fix the fault handling logic so
such errors are reported as stack overflows and not as
generic CPU exceptions.
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
When the MMARVALID bit is not set, do not read the MMFAR
register to get the fault address in a MemManage fault.
This change prevents the fault handler to erroneously
assume MMFAR contains a valid address.
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
Currently Zephyr links reset-vector.S twice in xtensa builds:
into the bootloader and the main image. It is run at the end
of the boot loader execution and immediately after that again
in the beginning of the main code. This patch adds a
configuration option to select whether to link the file to the
bootloader or to the application. The default is to the
application, as needed e.g. for QEMU, SOF links it to the
bootloader like in native builds.
Signed-off-by: Guennadi Liakhovetski <guennadi.liakhovetski@linux.intel.com>
Before hooking up the MMU driver code to the Zephyr MMU core code it's
better to match the expected variable types of the two parts.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
The MMU code is currently assuming that Zephyr only uses one single set
of page tables shared by kernel and user threads. This could possibly be
not longer true in the future when multiple set of page tables can be
present and swapped at run-time.
With this patch a new arm_mmu_ptables struct is introduced that is used
to host a buffer pointing to the memory region containing the page
tables and the helper variables used to manage the page tables. This new
struct is then used by the ARM64 MMU code instead of assuming that the
kernel page tables are the only ones present.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
The ARM64 MMU code used to create the page tables is strictly tied to
the custom arm_mmu_region struct. To be able to hook up this code to the
Zephyr MMU APIs we need to make it more generic.
This patch makes the mapping function more generic and creates a new
helper function add_arm_mmu_region() to map the regions defined by the
old arm_mmu_region structs using this new generic function.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
In the current code the base xlat table is a standalone array. This is
done because we know at compile time the size of this table so we can
allocate the correct size and save a bit of memory. All the other xlat
tables are statically allocated in a different array with full size.
With this patch we move all the page tables in one single array,
including the base table. This is probably going to waste a bit of space
but it makes easier to:
- have all the page tables mapped in one single contiguous memory region
instead of having to take care of two different arrays in two
different locations
- duplicate the page tables more quickly if we need to
- use a pre-allocated space to host the page tables
- use a pre-computed set of page tables saved in a contiguous memory
region
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
There may be Xtensa SoCs which don't have high enough interrupt
levels for EPC6/EPS6 to exist in _restore_context. So changes
these to those which should be available according to the ISA
config file.
Fixes#30126
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
In the current MMU code a new table is created when mapping a memory
region that is overlapping with a block already mapped. The problem is
that the new table is created also when the new and old mappings have
the same attributes.
To avoid using a new table when not needed the attributes of the two
mappings are compared before creating the new table.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
The original idea of using a custom switch to main thread
function is to make sure the buffer to save floating point
registers are aligned correctly or else exception would be
raised when saving/restoring those registers. Since
the struct of the buffer is defined with alignment hint
to toolchain, the alignment will be enforced by toolchain
as long as the k_thread struct variable is a dedicated,
declared variable. So there is no need for the custom
switch to main thread function anymore.
This also allows the stack usage calculation of
the interrupt stack to function properly as the end of
the interrupt stack is not being used for the dummy
thread anymore.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
As of today generic _irq_vector_table is used only on 32bit
architectures and 64bit architectures have their own implementation.
Make vectors size adjustable by using uintptr_t instead of uint32_t
for vectors.
The ARCv3 64 bit HS6x processors are going to be first users for
that.
Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
ATOMIC_OPERATIONS_BUILTIN still has some problem in mwdt toolchain,
so choosing ATOMIC_OPERATIONS_C instead.
Signed-off-by: Watson Zeng <zhiwei@synopsys.com>
This commit adds possibility to disable ECC in Tightly Coupled
Memory in Cortex-R.
Linker scripts places stacks in this memory and marks it as
.noinit section. With ECC enabled, stack read accesses without
previous write result in Data Abort Exception.
Signed-off-by: Wojciech Sipak <wsipak@antmicro.com>
accessing the stack below guard_end is always a bug. some
instrustions (like enter_s {r13-r26, fp, blink}) push a collection
of registers on to the stack. In this situation, the fault_addr will
less than guard_end, but sp will greater than guard_end.
|------stack base-------| <--- high address
| |
| | <--- sp
|------stack top--------|
|------guard_end--------|
| | <--- fault_addr
| |
|------guard_start------| <--- low address
So we need to remove the SP check. Trade-off here is if we prefer
'false' classifications of MPU stack guard area accesses as stack
error or as general mpu error. The faults get caught anyway, this is
just about classification: don't see a strong need for the extra check
to only report stack pointer accesses to guard area as stack error,
instead of all accesses.
Signed-off-by: Watson Zeng <zhiwei@synopsys.com>
Convert device to DEVICE_DEFINE instead of DEVICE_AND_API_INIT
so we can deprecate DEVICE_AND_API_INIT in the future.
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
Fix the following complilation error that happens when specifying a
fixed MMIO address for the UART through X86_SOC_EARLY_SERIAL_MMIO8_ADDR:
arch/x86/core/early_serial.c:30:26: error: #if with no expression
30 | #if DEVICE_MMIO_IS_IN_RAM
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
According to CONFIG_ARMV8_A_NS, using MT_SECURE or MT_NS, to simplify
code change, use MT_DEFAULT_SECURE_STATE instead
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Renamed to make its semantics clearer; this function maps
*physical* memory addresses and is not equivalent to
posix mmap(), which might confuse people.
mem_map test case remains the same name as other memory
mapping scenarios will be added in the fullness of time.
Parameter names to z_phys_map adjusted slightly to be more
consistent with names used in other memory mapping functions.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
In _isr_wrapper, the interrupt ID read from the GIC is blindly used to
index into _sw_isr_table, which is only sized based on CONFIG_NUM_IRQ.
It is possible for both GICv2 and GICv3 to return 1023 for a handful
of scenarios, the simplest of which is a level sensitive interrupt
which has subsequently become de-asserted. Borrowing from the Linux
GIC implementation, a read that returns an interrupt ID of 1023 is
simply ignored.
Minor collateral changes to gic.h to group !_ASMLANGUAGE content
together to allow this header to be used in assembler files.
Signed-off-by: Luke Starrett <luke.starrett@gmail.com>
The page table implementation requires conversion between virtual
and physical addresses when creating and walking page tables. Add
a phys_addr() and virt_addr() functions instead of hard-casting
these values, plus a macro for doing the same in ASM code.
Currently, all pages are identity mapped so VIRT_OFFSET = 0, but
this will now still work if they are not the same.
ASM language was also updated for 32-bit. Comments were left in
64-bit, as long mode semantics don't allow use of Z_X86_PHYS_ADDR
macro; this can be revisited later.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
In native_posix and nrf52_bsim add the cpu_hold() function,
which can be used to emulate the time it takes for code
to execute.
It is very similar to arch_busy_wait(), but while
arch_busy_wait() returns when the requested time has passed,
cpu_hold() ensures that the time passes in the callers
context independently of how much time may pass in some
other context.
Signed-off-by: Alberto Escolar Piedras <alpi@oticon.com>
Fix compiler warnings associated with 'level' and 'entry' variables
'may be used uninitialized in this function'
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
The GIC interrupt controller driver is using a custom init function
called directly from the prep_c function. For consistency move that to
use SYS_INIT.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
This was reporting the wrong page tables for supervisor
threads with KPTI enabled.
Analysis of existing use of this API revealed no problems
caused by this issue, but someone may trip over it eventually.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
We now show:
- Data pages that are paged out in red
- Pages that are mapped but non-present due to KPTI,
respectively in cyan or blue if they are identity mapped
or not.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
With kernel page table isolation (KPTI) we cannot use right exception
stack since after using trampoline stack there was always switch to
7th IST stack (__x86_tss64_t_ist7_OFFSET). Make this configurable as a
parameter in EXCEPT(nr, ist) and EXCEPT_CODE(nr, ist). For the NMI we
would use ist6 (_nmi_stack).
Signed-off-by: Andrei Emeltchenko <andrei.emeltchenko@intel.com>
NMI can be triggered at any time, even when in the process of
switching stacks. Use special stack for it.
Signed-off-by: Andrei Emeltchenko <andrei.emeltchenko@intel.com>
range_map() now doesn't implicitly hold x86_mmu_lock, allowing
callers to use it if the lock is already held.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
- Remove SYS_ prefix
- shorten POWER_MANAGEMENT to just PM
- DEVICE_POWER_MANAGEMENT -> PM_DEVICE
and use PM_ as the prefix for all PM related Kconfigs
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Provide the necessary adjustments to get MSI-X working (with or without
Intel VT-D).
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
This is part of Intel VT-D and how to discover capabilities, base
addresses and so on in order to start taking advantage from it.
There is a lot to get from there, but currently we are interested only
by getting the remapping hardware base address. And more specifically
for interrupt remapping usage.
There might be more than one of such hardware so the exposed function is
made to retrieve all of them.
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
This will be used by MSI multi-vector implementation to connect the irq
and the vector prior to allocation.
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
ARM64 is currently using SP_ELx as stack pointer for kernel and threads
because everything is running in EL1. If support for EL0 is required, it
is necessary to switch to use SP_EL0 instead, that is the only stack
pointer that can be accessed at all exception levels by threads.
While it is not required to keep using SP_EL0 also during the
exceptions, the current code implementation makes it easier to use the
same stack pointer as the one used by threads also during the
exceptions.
This patch moves the code from using SP_ELx to SP_EL0 and fill in the
missing entries in the vector table.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
This change adds full shared floating point support for the SPARC
architecture.
All SPARC floating point registers are scratch registers with respect
to function call boundaries. That means we only have to save floating
point registers when switching threads in ISR. The registers are
stored to the corresponding thread stack.
FPU is disabled when calling ISR. Any attempt to use FPU in ISR
will generate the fp_disabled trap which causes Zephyr fatal error.
- This commit adds no new thread state.
- All FPU contest save/restore is synchronous and lazy FPU context
switch is not implemented.
Signed-off-by: Martin Åberg <martin.aberg@gaisler.com>
With this change we allocate stack space only for the registers we
actually store in the thread interrupt stack frame.
Furthermore, no function is called on with the interrupt context save
frame %sp so no full frame is needed here. ABI functions are called
later in the interrupt trap handler, but that is after the dedicated
interrupt stack has been installed.
This saves 96 bytes of stack space for each interrupted context.
Signed-off-by: Martin Åberg <martin.aberg@gaisler.com>
The input registers (i0..i7) are not modified by the interrupt trap
handler and are preserved by function calls. So we do not need to
store them in the interrupt stack frame.
This saves 48 bytes of stack space for each interrupted context,
and eliminates 4 double word stores and 4 double word loads.
Signed-off-by: Martin Åberg <martin.aberg@gaisler.com>
This is important for when we will need to atomically
un-map a page and get its dirty state before the un-mapping
completed.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
On Cortex M7, we need to check the optional presence of
Lock Access Register (LAR) which is indicated in
Lock Status Register (LSR).
When present, a special access token must be written to unlock DWT
registers.
Signed-off-by: Alexandre Bourdiol <alexandre.bourdiol@st.com>
The 2K alignment assembler directives should be under
'SECTION_SUBSEC_FUNC(exc_vector_table,_vector_table_section,_vector_table)'
Otherwise the _vector_table is actually 0x80 bytes aligned.
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Most of kernel files where declaring os module without providing
log level. Because of that default log level was used instead of
CONFIG_KERNEL_LOG_LEVEL.
Signed-off-by: Krzysztof Chruscinski <krzysztof.chruscinski@nordicsemi.no>
According to the PRMs of both ARC EM & ARC HS families on entry
to Fast IRQ handler ARC hardware saves PC (Program Counter) value
of where processor was right before jumping to the IRQ handler into
2 registers: ILINK & ERET.
But it turned out in case of ARC HS (at least in configuration with
Fast IRQs & 1 register bank) only ILINK was populated with the
previous PC, while in Zephyr we relied on what we read out of ERET.
That lead to funny issues when CPU returned from IRQ handling
to some unexpected location.
And now with that precious knowledge we're switching to return
address recovery from ILINK so that with both families of ARC
processors (EM & HS) we may get reliably good results.
The wrapper is few cycles shorter/faster as well, as we may shave off
another extra instruction for transferring ERET value from its AUX reg
to a scratch core register to be later stored in the memory.
+----+---------------+---------------+--------------+
| | FIRQ | RIRQ | RIRQ(Secure) |
+----+---------------+---------------+--------------+
| HS | ILINK=PC | ILINK=PC | NULL |
+----+---------------+---------------+--------------+
| EM | ILINK=ERET=PC | ILINK=ERET=PC | ILINK=PC |
+----+---------------+---------------+--------------+
Signed-off-by: Watson Zeng <zhiwei@synopsys.com>
Handle the difference of GNU & MWDT assembly for ARC-specific
code guarded by CONFIG_SMP define. That fixies SMP platforms build
with MWDT toolchain.
Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
currently pcie_get_mbar only returns the physical address.
This changes the function to return the size of the mbar and
the flags (IO Bar vs MEM BAR).
Signed-off-by: Maximilian Bachmann <m.bachmann@acontis.com>
Adds a new CONFIG_MPU which is set if an MPU is enabled. This
is a menuconfig will some MPU-specific options moved
under it.
MEMORY_PROTECTION and SRAM_REGION_PERMISSIONS have been merged.
This configuration depends on an MMU or MPU. The protection
test is updated accordingly.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
k_mem_partition is part of the CONFIG_USERSPACE abstraction,
but some older MPU code was depending on it even if user mode
isn't enabled. Use a new structure z_arm_mpu_partition instead,
which will insulate this code from any changes to the core
kernel definition of k_mem_partition.
The logic in z_arm_configure_dynamic_mpu_regions has been
adjusted to copy the necessary information out of the
memory domain instead of passing the addresses of the domain
structures directly to the lower-level MPU code.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This commit implements the architecture specific parts for the
Zephyr tracing subsystem on SPARC and LEON3. It does so by calling
sys_trace_isr_enter(), sys_trace_isr_exit() and sys_trace_idle().
The logic for the ISR tracing is:
1. switch to interrupt stack
2. *call sys_trace_isr_enter()* if CONFIG_TRACING_ISR
3. call the interrupt handler
4. *call sys_trace_isr_exit()* if CONFIG_TRACING_ISR
5. switch back to thread stack
Signed-off-by: Martin Åberg <martin.aberg@gaisler.com>
Every time I try to decode all the defines in this driver what I get is
only a huge headache. This patch:
- adds a few sensible comments
- remove the redundant defines
- rename the defines to be more self-explanatory
- reorder the defines
- try to make sense of some mysterious derived values
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
As done already for other structs, use the macro-generated offsets when
referencing register in the ESF.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
The init_stack_frame is the same as the the ESF. No need to have two
separate structs. Consolidate everything into one single struct and make
register entries explicit.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
Use GEN_OFFSET_SYM macro to genarate absolute symbols for the
_callee_saved struct and use these new symbols in the assembly code.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
For some kind of faults we want to be able to put in action some
corrective actions and keep executing the code.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
Make the printing of errors a bit more descriptive and print the FAR_ELn
register only when strictly required.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
Each vector table entry has 128-bytes to host the vector code. This is
not always enough and in general it's better to branch to the actual
exception handler elsewhere in memory.
Move the SError entry to a branched code.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
Adds the necessary bits to initialize TLS in the stack
area and sets up CPU registers during context switch. Register g7 is
used to point to the thread data. Thread data is accessed with negative
offsets from g7.
Signed-off-by: Martin Åberg <martin.aberg@gaisler.com>
SPARC is an open and royalty free processor architecture.
This commit provides SPARC architecture support to Zephyr. It is
compatible with the SPARC V8 specification and the SPARC ABI and is
independent of processor implementation.
Functionality specific to SPRAC processor implementations should
go in soc/sparc. One example is the LEON3 SOC which is part of this
patch set.
The architecture port is fully SPARC ABI compatible, including trap
handlers and interrupt context.
Number of implemented register windows can be configured.
Some SPARC V8 processors borrow the CASA (compare-and-swap) atomic
instructions from SPARC V9. An option has been defined in the
architecture port to forward the corresponding code-generation option
to the compiler.
Stack size related config options have been defined in sparc/Kconfig
to match the SPARC ABI.
Co-authored-by: Nikolaus Huber <nikolaus.huber.melk@gmail.com>
Signed-off-by: Martin Åberg <martin.aberg@gaisler.com>
This changes to use stack to store registers before calling thread
switch instrumentation functions, instead of using the thread's
register saving struct.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Since the tracing of thread being switched in/out has the same
instrumentation points, we can roll the tracing function calls
into the one for thread stats gathering functions.
This avoids duplicating code to call another function.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
We should not be initializing/starting/stoping timing functions
multiple times. So this changes how the timing functions are
structured to allow only one initialization, only start when
stopped, and only stop when started.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
In a5f34d85c2 ("soc: arm: qemu_cortex_a53: Remove SRAM region") the
SRAM memory region was removed.
While this is correct when userspace is not enabled, when userspace is
enabled new regions are introduced outside the boundaries of
the mapped [__kernel_ram_start,__kernel_ram_end] region. This means that
we need to map again the whole SRAM to include all the needed regions.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
align kconfig option CONFIG_ARC_CUSTOM_INIT to
CONFIG_INIT_ARCH_HW_AT_BOOT. Remove unused CONFIG_ARC_CUSTOM_INIT in
kconfig.
Signed-off-by: Yuguo Zou <yuguo.zou@synopsys.com>
Some platforms may have multiple RAM regions which are
dis-continuous in the physical memory map. We really want
these to be in a continuous virtual region, and we need to
stop assuming that there is just one SRAM region that is
identity-mapped.
We no longer use CONFIG_SRAM_BASE_ADDRESS and CONFIG_SRAM_SIZE
as the bounds of kernel RAM, and no longer assume in the core
kernel that these are identity mapped at boot.
Two new Kconfigs, CONFIG_KERNEL_VM_BASE and
CONFIG_KERNEL_RAM_SIZE now indicate the bounds of this region
in virtual memory.
We are currently only memory-mapping physical device driver
MMIO regions so we do not need virtual-to-physical calculations
to re-map RAM yet. When the time comes an architecture interface
will be defined for this.
Platforms which just have one RAM region may continue to
identity-map it.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
The Inter-core Debug Unit provides additional debug assist features in
multi-core scenarios.This commit allows ARConnect to conditionally
halt cores during debugging.
Signed-off-by: Yuguo Zou <yuguo.zou@synopsys.com>
The IRQ handler has had a major changes to manage syscall, reschedule
and interrupt from user thread and stack guard.
Add userspace support:
- Use a global variable to know if the current execution is user or
machine. The location of this variable is read only for all user
thread and read/write for kernel thread.
- Memory shared is supported.
- Use dynamic allocation to optimize PMP slot usage. If the area size
is a power of 2, only one PMP slot is used, else 2 are used.
Add stack guard support:
- Use MPRV bit to force PMP rules to machine mode execution.
- IRQ stack have a locked stack guard to avoid re-write PMP
configuration registers for each interruption and then win some
cycle.
- The IRQ stack is used as "temporary" stack at the beginning of IRQ
handler to save current ESF. That avoid to trigger write fault on
thread stack during store ESF which that call IRQ handler to
infinity.
- A stack guard is also setup for privileged stack of a user thread.
Thread:
- A PMP setup is specific to each thread. PMP setup are saved in each
thread structure to improve reschedule performance.
Signed-off-by: Alexandre Mergnat <amergnat@baylibre.com>
Reviewed-by: Nicolas Royer <nroyer@baylibre.com>
- Set some helper function to write/clear/print PMP config registers.
- Add support for different PMP slot size function to core/board.
Signed-off-by: Alexandre Mergnat <amergnat@baylibre.com>
Introducing core E31 family to link Zephyr features (userspace and
stack protection) to architecture capabilities (PMP).
Signed-off-by: Alexandre Mergnat <amergnat@baylibre.com>
We provide an option for low-memory systems to use a single set
of page tables for all threads. This is only supported if
KPTI and SMP are disabled. This configuration saves a considerable
amount of RAM, especially if multiple memory domains are used,
at a cost of context switching overhead.
Some caching techniques are used to reduce the amount of context
switch updates; the page tables aren't updated if switching to
a supervisor thread, and the page table configuration of the last
user thread switched in is cached.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This will do until we can set up a proper page pool using
all unused ram for paging structures, heaps, and anonymous
mappings.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Help users understand how this should be tuned. Rather than
guessing wildly, set the default to 0. This needs to be tuned
on a per-board, per-application basis anyway.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
We don't need this for stacks any more and only use this
for pre-calculating the boot page tables size. Move to C
code, this doesn't need to be in headers anywhere.
Names adjusted for conciseness.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
- z_x86_userspace_enter() for both 32-bit and 64-bit now
call into C code to clear the stack buffer and set the
US bits in the page tables for the memory range.
- Page tables are now associated with memory domains,
instead of having separate page tables per thread.
A spinlock protects write access to these page tables,
and read/write access to the list of active page
tables.
- arch_mem_domain_init() implemented, allocating and
copying page tables from the boot page tables.
- struct arch_mem_domain defined for x86. It has
a page table link and also a list node for iterating
over them.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Page table management for x86 is being revised such that there
will not in many cases be a pristine, master set of page tables.
Instead, when mapping memory, use unused PTE bits to store the
original RW, US, and XD settings when the mapping was made.
This will allow memory domains to alter page tables while still
being able to restore the original mapping permissions.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This will be needed when we support memory un-mapping, or
the same user mode page tables on multiple CPUs. Neither
are implemented yet.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
The current MMU code is assuming that both kernel and threads are both
running in EL1, not supporting EL0. Extend the support to EL0 by adding
the missing attribute to mirror the access / execute permissions to EL0.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
We are probably going to do more work on the MMU side and more files
will be added. Create a new sub-directory to host all the MMU related
files.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
There is a register misuse in leaving tickless idle code, which would
destroy exception/interrupt status. This commit fix this issue.
Signed-off-by: Yuguo Zou <yuguo.zou@synopsys.com>
Implement the functionality for configuring the
architecture core registers to their warm reset
values upon system initialization. We enable the
support of the feature in the Cortex-M architecture.
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
We enhance the documentation of z_arm_reset, stressing that
the function may either be loaded by the processor coming
out of reset, or by another image, e.g. a bootloader. We
also specify what is required at minimum when executing the
reset function.
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
We introduce an option that instructs Zephyr to perform
the initialization of internal architectural state (e.g.
ARCH-level HW registers and system control blocks) during
early boot to the reset values. The option is available
to the application developer but shall depend on whether
the architecture supports the functionality.
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
This is redundant and not coherent with the rest of the file. Thus
remove the _BIT suffix from the bit field names.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
The current vector table is missing some (not used) entries. Fill these
in for the sake of completeness.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
The SVC handler is not only used for the SVC call but in general for all
the synchronous exceptions. Reflect this in the handler name.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
In the code path for nested interrupts, we are not saving
RBX, yet the assembly code is using it as a storage location
for the ISR.
Use RAX. It is backed up in both the nested and non-nested
cases, and the ASM code is not currently using it at that
point.
Fixes: #29594
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Adds the necessary bits to initialize TLS in the stack
area and sets up CPU registers during context switch.
Note that this does not enable TLS for all Xtensa SoC.
This is because Xtensa SoCs are highly configurable
so that each SoC can be considered a whole architecture.
So TLS needs to be enabled on the SoC level, instead of
at the arch level.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Adds the necessary bits to initialize TLS in the stack
area and sets up CPU registers during context switch.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Adds the necessary bits to initialize TLS in the stack
area and sets up CPU registers during context switch.
Note that since Cortex-M does not have the thread ID or
process ID register needed to store TLS pointer at runtime
for toolchain to access thread data, a global variable is
used instead.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Adds the necessary bits to initialize TLS in the stack
area and sets up CPU registers during context switch.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Adds the necessary bits to initialize TLS in the stack
area and sets up CPU registers during context switch.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Adds the necessary bits to initialize TLS in the stack
area and sets up CPU registers during context switch.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Adds the necessary bits to initialize TLS in the stack
area and sets up CPU registers during context switch.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Add kconfigs to indicate whether an architecture has support
for thread local storage (TLS), and to enable TLS in kernel.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
This seems like a typo since all other places accessing bus_segs in
this context use i as the index.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
In old version nSIM, when cpu is sleeping, no response to
inter-processor interrupt although it's pending and interrupts
are enabled(SNPS JIRA issue P10019563-41294). Now this has
been fixed in nSIM version (2020.09), so we can safely remove it.
Signed-off-by: Watson Zeng <zhiwei@synopsys.com>
Implement the kernel "coherence" API on top of the linker
cached/uncached mapping work.
Add Xtensa handling for the stack coherence API.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Zephyr SMP kernels need to be able to run on architectures with
incoherent caches. Naive implementation of synchronization on such
architectures requires extensive cache flushing (e.g. flush+invalidate
everything on every spin lock operation, flush on every unlock!) and
is a performance problem.
Instead, many of these systems will have access to separate "coherent"
(usually uncached) and "incoherent" regions of memory. Where this is
available, place all writable data sections by default into the
coherent region. An "__incoherent" attribute flag is defined for data
regions that are known to be CPU-local and which should use the cache.
By default, this is used for stack memory.
Stack memory will be incoherent by default, as by definition it is
local to its current thread. This requires special cache management
on context switch, so an arch API has been added for that.
Also, when enabled, add assertions to strategic places to ensure that
shared kernel data is indeed coherent. We check thread objects, the
_kernel struct, waitq's, timeouts and spinlocks. In practice almost
all kernel synchronization is built on top of these structures, and
any shared data structs will contain at least one of them.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
It's legal to have CONFIG_MP_NUM_CPUS > 1 and !CONFIG_SMP. The
tests/kernel/mp test does this as a unit test of the multiprocessor
facilities. Test the right tunable when deciding whether to blow away
static data or not.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
These days all threads are always a member of a memory domain,
remove this NULL check as it won't ever be false.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This function iterates over the thread's memory domain
and updates page tables based on it. We need to be holding
z_mem_domain_lock while this happens.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Add posix_board_if.h which declares posix_exit().
This fixes implicit declaration of function errors when running
sanitycheck on samples for native_posix that calls sys_reboot().
Signed-off-by: Mikkel Jakobsen <mikkel.aunsbjerg@prevas.dk>
fixes the following compilation errors
- sys_cache_line_size was undeclared at first use
- there was an assignment to an rvalue in arch_dcache_flush
Signed-off-by: Maximilian Bachmann <m.bachmann@acontis.com>
Originally the EFI boot code was written to assume that all sections
in the ELF file were 8-byte aligned and sized (because I thought this
was part of some platform spec somewhere). This turned out to be
wrong in practice (at least for section sizes), so the requirement was
reduced to 4 bytes. But now we have a section being generated
somewhere that turns out to violate even that.
There's no particular value in doing those copies in big chunks.
There's at best a mild performance benefit, but if we really cared
we'd be using a more complicated memcpy() implementation anyway.
Replace the loop in the C code with a bytewise copy, change the size
field in the generated header to store bytes, and remove the
assertions (which were the failuers actually being seen in practice)
in the script that were there to detect this misalignment.
Fixes#29095
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Setup the stack as early as possible to catch any possible errors in the
reset routine and handle also EL3 fatal errors.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
The content of the SCR_EL3 register is overwritten by a later
instruction. Also no need to route SError, IRQs and FIQs to EL3.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
Instead of having some special stack frame when first scheduling new
thread and a new thread entry wrapper to pull out the needed data, we
can reuse the context restore code by adapting the initial stack frame.
This reduces the lines of code and simplify the code at the expense of a
slightly bigger initial stack frame.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
gen_isr_tables.py generates C-code which initializes a table with
values, and these values are structs with members cast to
(const void *) and (void *), respectively.
The actual struct definition has a member of type (const void *)
and another of type void (*)(const void *).
In order to avoid a large amount of reported issues in Coverity,
cast this to the exact type.
Signed-off-by: Torstein Grindvik <torstein.grindvik@nordicsemi.no>
EMSK boards can't be reset between tests due to hardware configures.
MPU v3 configs in previous test could cause exceptions in the following
tests. This commit fixes this issue by restoring MPU registers initial
states at early init stage.
Signed-off-by: Yuguo Zou <yuguo.zou@synopsys.com>
Previously MPU registers macros are only defined within its own header
files and could not be used by other part of program. This commit unify
them together.
Signed-off-by: Yuguo Zou <yuguo.zou@synopsys.com>
Both operands of an operator in the arithmetic conversions
performed shall have the same essential type category.
Changes are related to converting the integer constants to the
unsigned integer constants
Signed-off-by: Aastha Grover <aastha.grover@intel.com>
The hardcoded APIC ID will be kept as default if the CPU is not found in
ACPI MADT.
Note that ACPI may expose more "CPUs" than there actually are
physically. Thus, make the logic aware of this possibility by checking
the enabled flas. (Non-enabled CPU are ignored).
This fixes up_squared board made of Celeron CPU.
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
No need to mix super short version of names with other structures
having full name. Let's follow a more relevant naming where each and
every attribute name is self-documenting then. (such as s/id/apic_id
etc...)
Also make CONFIG_ACPI usable through IS_ENABLED by enclosing exposed
functions with ifdef CONFIG_ACPI.
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
Zephyr is only supposed to be running at EL1 (+ EL0). Now that we drop
in EL1 from ELn at start we can remove all the EL2/EL3 unused code.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
Remove the useless CONFIG_SWITCH_TO_EL1 since there should be no reason
to run Zephyr in EL3. So just drop to EL1 by default when booting from
EL3. Remove also non-reachable code.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
- Display full 64-bits register width in crash dumps
- Some values were prefixed 0x, some not. Made consistent.
Signed-off-by: Luke Starrett <luke.starrett@gmail.com>
- x0/x1 register printing is reversed
- The error stack frame struct (z_arch_esf_t) had the SPSR and ELR in
the wrong position, inconsistent with the order these regs are pushed
to the stack in z_arm64_svc. This caused all register printing to be
skewed by two.
- Verified by writing known values (abcd0000 -> abcd000f) to x0 - x15
and then forcing a data abort.
Signed-off-by: Luke Starrett <luke.starrett@gmail.com>
Fixes races where threads on another CPU are joining the
exiting thread, since it could still be running when
the joiners wake up on a different CPU.
Fixes problems where the thread object is still being
used by the kernel when the fn_abort() function is called,
preventing the thread object from being recycled or
freed back to a slab pool.
Fixes a race where a thread is aborted from one CPU while
it self-aborts on another CPU, that was currently worked
around with a busy-wait.
Precedent for doing this comes from FreeRTOS, which also
performs final thread cleanup in the idle thread.
Some logic in z_thread_single_abort() rearranged such that
when we release sched_spinlock, the thread object pointer
is never dereferenced by the kernel again; join waiters
or fn_abort() logic may free it immediately.
An assertion added to z_thread_single_abort() to ensure
it never gets called with thread == _current outside of an ISR.
Some logic has been added to ensure z_thread_single_abort()
tasks don't run more than once.
Fixes: #26486
Related to: #23063#23062
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Enable interrupts before switching to main()
in cortex-m builds with single-thread mode
(CONFIG_MULTITHREADING=n).
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
We are not RAM-constrained and there is an open issue where
exception stack overflows are not caught. Increase this size
so that options like CONFIG_NO_OPTIMIZATIONS work without
incident.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Commit 5632ee26f3 introduced an issue where in order to use MMIO
configuration:
- do_pcie_mmio_cfg is required to be true
- Only set to true in pcie_mm_init()
- Which is only called from pcie_mm_conf()
- Which is only called from pcie_conf() if do_pcie_mmio_cfg is
already true!
The end result is that MMIO configuration will never be used.
Fix the situation by moving the initialization check to pcie_conf().
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
If the location counter ('.') is within the area that the veneers
should go, the current solution will give a linker error ("Cannot move
location counter backwards"). This patch places the veneers in the next
SPU region in this case.
Signed-off-by: Øyvind Rønningstad <oyvind.ronningstad@nordicsemi.no>
The current instrumentation point for CONFIG_TRACING added in
PR #28512 had two problems:
- If userspace and KPTI are enabled, the tracing point is simply
never run if we are resuming a user thread as the
z_x86_trampoline_to_user function is jumped to and calls
'iret' from there
- Only %rdi is being saved. However, at that location, *all*
caller-saved registers are in use as they contain the
resumed thread's context
Simplest solution is to move this up near where we update page
tables. The #ifdefs are used to make sure we don't push/pop
%rdi more than once. At that point in the code only %rdi
is in use among the volatile registers.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
CPU Cortex-M implies Mainline Cortex-M, therfore, the dependency
on ARMV6_M_ARMV8_M_BASELINE is redundant and can be removed. The
change in this commit is a no-op.
We also add the ARMV6_M_ARMV8_M_BASELINE dependency on option
CPU_CORTEX_M0_HAS_VECTOR_TABLE_REMAP to make sure it cannot be
selected for non Cortex-M Baseline SoCs (at least, not without
a warning).
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
Tracing switched in threads in C code does not work, it needs to happen
in the arch_switch code. See also Xtensa and ARC.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Newer QEMU (5.1) hangs / timeouts on a number of tests on x86_64. In
debugging the issue this is related to a fix in QEMU 5.1 that
validates memory region access. QEMU has the APIC region only allowing
1 to 4 byte access. 64-bit access is treated as an error.
Change the APIC EOI access in locore.S back to just doing a 32-bit
access.
Fixes # 28453
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
The boot code of x86_64 initializes the stack (if enabled)
with a hard-coded size for the ISR stack. However,
the stack being used does not have to be the ISR stack,
and can be any defined stacks. So pass in the actual size
of the stack so the stack can be initialized properly.
Fixes#21843
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Using SCB_CleanInvalidateDcache instead of SCB_DisableDcache
& SCB_EnableDcache when config the non-cache area, in case
of the cache will effect the configuration of the non-cache
area
Signed-off-by: Crist Xu <crist.xu@nxp.com>
Changes to paging code ensured that the NULL virtual page is
never mapped. Since RAM is identity mapped, on a PC-like
system accessing the BIOS Data Area in the first 4K requires
a memory mapping. We need to read this to probe the ACPI RSDP.
Additionally check that the BDA has something in it as well
and not a bunch of zeroes.
It is unclear whether this function is truly safe on UEFI
systems, but that is for another day.
Fixes: #27867
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
When probing for PCI-E device resources, it is possible that
configuration via MMIO is not available. This may caused by
BIOS or its settings. So when CONFIG_PCIE_MMIO_CFG=y, have
a fallback path to config devices via PIO. The inability to
config via MMIO has been observed on a couple UP Squared
boards.
Fixes#27339
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Work around an issue where the emulator ignores host OS
signals when inside a `wfi` instruction.
This should be reverted once this has been addressed in the
AARCH64 build of QEMU in the SDK.
See https://github.com/zephyrproject-rtos/sdk-ng/issues/255
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
When _arch_switch() API is used, the tracing of the thread swapped out
is done in the C kernel code (in do_swap() for cooperative scheduling
and in set_current() during preemption). In the assembly code we only
have to trace the thread when swapped in.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
Cortex-M SoCs implement (optionally) the Data Watchpoint and
Tracing Unit (DWT), which can be used for timing functions.
Select the corresponding ARCH capability if the SoC implements
the DWT.
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
This code had one purpose only, feed timing information into a test and
was not used by anything else. The custom trace points unfortunatly were
not accurate and this test was delivering informatin that conflicted
with other tests we have due to placement of such trace points in the
architecture and kernel code.
For such measurements we are planning to use the tracing functionality
in a special mode that would be used for metrics without polluting the
architecture and kernel code with additional tracing and timing code.
Furthermore, much of the assembly code used had issues.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Add initial support for X86 and get timestamps from tsc.
Authored-by: Daniel Leung <daniel.leung@intel.com>
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
As of today we have a bit weird situation with generated
sw_isr_table / irq_vector_table tables.
On the final linkage stage we pass two files which content
section with sw_isr_table / irq_vector_table. They are
* libarch__common.a (with an outdated tables from the first
linkage stage)
* isr_tables.c.obj (with an actual tables)
The sections where tables are located are marked with
".gnu.linkonce" prefix. That means:
<<<As a GNU extension, if the name begins with .gnu.linkonce,
we only link a single copy of the section.>>>
However the "libarch__common.a" is passed to linker with
"--whole-archive" option which means <<<include every object
file in the archive in the link, rather than searching the archive
for the required object files>>>
That combination confuses MWDT linker and breaks linkage with
MWDT toolchain.
As a simple fix we can move the sw_isr_table / irq_vector_table
sections to their own library and link this library with
"--no-whole-archive" option.
Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
"arch_switch" is declared as an inline function in kswap.h,
it should be a wrapper of arch level switch. The difference
of declaration and implementation of "arch_swich" causes
warning from MWDT compiler.
Use "arch_switch" with proper declararion (which is just
wraper for "z_arc_switch") to do conext switch for ARC.
Signed-off-by: Wayne Ren <wei.ren@synopsys.com>
Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
Make the assembly codes compatible with both GNU
and Metaware toolchain.
* replace ".balign" with ".align"
".align" assembler directive is supposed by all
ARC toolchains and it is implemented in a same
way across ARC toolchains.
* replace "mov_s __certain_reg" with "mov __certain_reg"
Even though GCC encodes those mnemonics and even real
HW executes them according to PRM these are restricted
ones for mov_s and CCAC rightfully refuses to accept
such mnemonics. So for compatibility and clarity sake
we switch to 32-bit mov instruction which allows use
of all those instructions.
* Add "%%" prefix while accessing registers from inline
ASM as it is required by MWDT.
* Drop "@" prefix while accessing symbols (defined in C
code) from ASM code as it is required by MWDT.
Signed-off-by: Wayne Ren <wei.ren@synopsys.com>
/#
GNU toolchain and MWDT (Metware) toolchain have different style
for accessing arguments in assembly macro. Implement the
preprocessor macro to handle the difference.
Make all ASM macros in swap_macros.h compatible for both ARC
toolchains.
Signed-off-by: Wayne Ren <wei.ren@synopsys.com>
Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
Switch to the _arch_switch() API that is required for an SMP-aware
scheduler instead of using the old arch_swap mechanism.
SMP is not supported yet but this is a necessary step in that direction.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
Provide a TZ_SAFE_ENTRY_FUNC() macro for wrapping non-secure entry
functions in calls to k_sched_lock()/k_sched_unlock()
Provide a __TZ_WRAP_FUNC() macro which helps in creating a function
that "wraps" another in a preface and postface function call.
int foo(char *arg); // Implemented somewhere else.
int __attribute__((naked)) foo_wrapped(char *arg)
{
WRAP_FUNC(bar, foo, baz);
}
is equivalent to
int foo(char *arg); // Implemented somewhere else.
int foo_wrapped(char *arg)
{
bar();
int res = foo(arg);
baz();
return res;
}
This commit also adds tests for __TZ_WRAP_FUNC().
Signed-off-by: Øyvind Rønningstad <oyvind.ronningstad@nordicsemi.no>
* Move switched_in into the arch context switch assembly code,
which will correctly record the switched_in information.
* Add switched_in/switched_out for context switch in irq exit.
Signed-off-by: Watson Zeng <zhiwei@synopsys.com>
We no longer plan to support a split address space with
the kernel in high memory and per-process address spaces.
Because of this, we can simplify some things. System RAM
is now always identity mapped at boot.
We no longer require any virtual-to-physical translation
for page tables, and can remove the dual-mapping logic
from the page table generation script since we won't need
to transition the instruction point off of physical
addresses.
CONFIG_KERNEL_VM_BASE and CONFIG_KERNEL_VM_LIMIT
have been removed. The kernel's address space always
starts at CONFIG_SRAM_BASE_ADDRESS, of a fixed size
specified by CONFIG_KERNEL_VM_SIZE.
Driver MMIOs and other uses of k_mem_map() are still
virtually mapped, and the later introduction of demand
paging will result in only a subset of system RAM being
a fixed identity mapping instead of all of it.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
In order to be possible to debug usermode threads need to be able
issue breakpoint and debug exceptions. To do this it is necessary to
set DPL bits to, at least, the same CPL level.
Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
It implements gdb remote protocol to talk with a host gdb during the
debug session. The implementation is divided in three layers:
1 - The top layer that is responsible for the gdb remote protocol.
2 - An architecture specific layer responsible to write/read registers,
set breakpoints, handle exceptions, ...
3 - A transport layer to be used to communicate with the host
The communication with GDB in the host is synchronous and the systems
stops execution waiting for instructions and return its execution after
a "continue" or "step" command. The protocol has an exception that is
when the host sends a packet to cause an interruption, usually triggered
by a Ctrl-C. This implementation ignores this instruction though.
This initial work supports only X86 using uart as backend.
Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
The same code was being copypasted in k_thread_abort()
implementations, just move into z_thread_single_abort().
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This isn't needed; match the vanilla implementation
in kernel/thread_abort.c and do this unlocked. This
should improve system latency.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
A check was being done that was a more obscure way of
calling arch_is_in_isr(). Add a comment explaining
why we need to trigger PendSV.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
We implement an ARM-only API for ARM Secure Firmware,
to set all NVIC IRQ lines to target the Non-Secure state.
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
we modify the ARM Cortex-M only API for managing the
security target state of the NVIC IRQs. We remove the
internal ASSERT checking allowing to call the API for
non-implemented NVIC IRQ lines. However we still give the
option to the user to check the success of the IRQ target
state setting operation by allowing the API function to
return the resulting target state.
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
All ISRs are meant to take a const struct device pointer, but to
simplify the change let's just move the parameter to constant and that
should be fine.
Fixes#27399
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
Now that device_api attribute is unmodified at runtime, as well as all
the other attributes, it is possible to switch all device driver
instance to be constant.
A coccinelle rule is used for this:
@r_const_dev_1
disable optional_qualifier
@
@@
-struct device *
+const struct device *
@r_const_dev_2
disable optional_qualifier
@
@@
-struct device * const
+const struct device *
Fixes#27399
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
To debug hard-to-reproduce faults/panics, it's helpful to get the full
register state at the time a fault occurred. This enables recovering
full backtraces and the state of local variables at the time of a
crash.
This PR introduces a new Kconfig option, CONFIG_EXTRA_EXCEPTION_INFO,
to facilitate this use case. The option enables the capturing of the
callee-saved register state (r4-r11 & exc_return) during a fault. The
info is forwarded to `k_sys_fatal_error_handler` in the z_arch_esf_t
parameter. From there, the data can be saved for post-mortem analysis.
To test the functionality a new unit test was added to
tests/arch/arm_interrupt which verifies the register contents passed
in the argument match the state leading up to a crash.
Signed-off-by: Chris Coleman <chris@memfault.com>
Saves us a few bytes of program text on arches that don't need
these implemented, currently all uniprocessor MPU-based systems.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
All of these should be no-ops for the following reasons:
1. User threads cannot configure memory domains, only supervisor
threads.
2. The scope of memory domains is user thread memory access,
supervisor threads can access the entire memory map.
Hence it's never required to reprogram the MPU on the current CPU
when a memory domain API is called.
This does not address the issue #27785 if a user thread in the domain
is running on some other CPU.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
All of these should be no-ops for the following reasons:
1. User threads cannot configure memory domains, only supervisor
threads.
2. The scope of memory domains is user thread memory access,
supervisor threads can access the entire memory map.
Hence it's never required to reprogram the MPU when a memory domain
API is called.
Fixes a problem where an assertion would fail if a supervisor thread
added a partition and then immediately removes it, and possibly
other problems.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
* add toolchain abstraction for coverage
* add select HAS_COVERAGE_SUPPORT to kconfig
* port gcov linker code to CKake for arc
Signed-off-by: Jingru Wang <jingru@synopsys.com>
The x86 paging code has been rewritten to support another paging mode
and non-identity virtual mappings.
- Paging code now uses an array of paging level characteristics and
walks tables using for loops. This is opposed to having different
functions for every paging level and lots of #ifdefs. The code is
now more concise and adding new paging modes should be trivial.
- We now support 32-bit, PAE, and IA-32e page tables.
- The page tables created by gen_mmu.py are now installed at early
boot. There are no longer separate "flat" page tables. These tables
are mutable at any time.
- The x86_mmu code now has a private header. Many definitions that did
not need to be in public scope have been moved out of mmustructs.h
and either placed in the C file or in the private header.
- Improvements to dumping page table information, with the physical
mapping and flags all shown
- arch_mem_map() implemented
- x86 userspace/memory domain code ported to use the new
infrastructure.
- add logic for physical -> virtual instruction pointer transition,
including cleaning up identity mappings after this takes place.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
The address was being truncated because we were using
32-bit registers. CONFIG_MMU is always enabled on 64-bit,
remove the #ifdef.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
We need to produce a binary set of page tables wired together
by physical address. Add build system logic to use the script
to produce them.
Some logic for running build scripts that produce artifacts moved
out of IA32 into common CMake code.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This produces a set of page tables with system RAM
mapped for read/write/execute access by supervisor
mode, such that it may be installed in the CPU
in the earliest boot stages and mutable at runtime.
These tables optionally support a dual physical/virtual
mapping of RAM to help boot virtual memory systems.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
The x86 ports are linked at their physical address and
the arch_mem_map() implementation currently requires
virtual = physical. This will be removed later.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
If CONFIG_MMU is active, choose whether to separate text,
rodata, and ram into their own page-aligned regions so that
they have have different MMU permissions applied.
If disabled, all RAM pages will have RWX permission to
supervisor mode, but some memory may be saved due to lack
of page alignment padding between these regions.
This used to always happen. This patch adds the Kconfig,
linker script changes to come in a subsequent patch.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This adds the necessary bits in arch code, and Python scripts
to enable coredump support for ARM Cortex-M.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>