Only a single bit of the 4-byte internal (thread.arch) status variable 'mode' is currently used, when we build with User mode support (CONFIG_USERSPACE=y). In this commit we extend the usage of 'mode' variable, adding an additional bit-flag to track the status of the floating point context in a particular thread, i.e. to track whether FP context is active or not. The status bit is meant to be used in context-switch, to restore the FP register context when required. Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
301 lines
9.5 KiB
C
301 lines
9.5 KiB
C
/*
|
|
* Copyright (c) 2013-2014 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief New thread creation for ARM Cortex-M
|
|
*
|
|
* Core thread related primitives for the ARM Cortex-M processor architecture.
|
|
*/
|
|
|
|
#include <kernel.h>
|
|
#include <toolchain.h>
|
|
#include <kernel_structs.h>
|
|
#include <wait_q.h>
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
extern u8_t *z_priv_stack_find(void *obj);
|
|
#endif
|
|
|
|
/**
|
|
*
|
|
* @brief Initialize a new thread from its stack space
|
|
*
|
|
* The control structure (thread) is put at the lower address of the stack. An
|
|
* initial context, to be "restored" by __pendsv(), is put at the other end of
|
|
* the stack, and thus reusable by the stack when not needed anymore.
|
|
*
|
|
* The initial context is an exception stack frame (ESF) since exiting the
|
|
* PendSV exception will want to pop an ESF. Interestingly, even if the lsb of
|
|
* an instruction address to jump to must always be set since the CPU always
|
|
* runs in thumb mode, the ESF expects the real address of the instruction,
|
|
* with the lsb *not* set (instructions are always aligned on 16 bit halfwords).
|
|
* Since the compiler automatically sets the lsb of function addresses, we have
|
|
* to unset it manually before storing it in the 'pc' field of the ESF.
|
|
*
|
|
* <options> is currently unused.
|
|
*
|
|
* @param stack pointer to the aligned stack memory
|
|
* @param stackSize size of the available stack memory in bytes
|
|
* @param pEntry the entry point
|
|
* @param parameter1 entry point to the first param
|
|
* @param parameter2 entry point to the second param
|
|
* @param parameter3 entry point to the third param
|
|
* @param priority thread priority
|
|
* @param options thread options: K_ESSENTIAL, K_FP_REGS
|
|
*
|
|
* @return N/A
|
|
*/
|
|
|
|
void z_new_thread(struct k_thread *thread, k_thread_stack_t *stack,
|
|
size_t stackSize, k_thread_entry_t pEntry,
|
|
void *parameter1, void *parameter2, void *parameter3,
|
|
int priority, unsigned int options)
|
|
{
|
|
char *pStackMem = Z_THREAD_STACK_BUFFER(stack);
|
|
char *stackEnd;
|
|
/* Offset between the top of stack and the high end of stack area. */
|
|
u32_t top_of_stack_offset = 0U;
|
|
|
|
Z_ASSERT_VALID_PRIO(priority, pEntry);
|
|
|
|
#if defined(CONFIG_USERSPACE)
|
|
/* Truncate the stack size to align with the MPU region granularity.
|
|
* This is done proactively to account for the case when the thread
|
|
* switches to user mode (thus, its stack area will need to be MPU-
|
|
* programmed to be assigned unprivileged RW access permission).
|
|
*/
|
|
stackSize &= ~(CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE - 1);
|
|
|
|
#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
|
|
/* Reserve space on top of stack for local data. */
|
|
u32_t p_local_data = STACK_ROUND_DOWN(pStackMem + stackSize
|
|
- sizeof(*thread->userspace_local_data));
|
|
|
|
thread->userspace_local_data =
|
|
(struct _thread_userspace_local_data *)(p_local_data);
|
|
|
|
/* Top of actual stack must be moved below the user local data. */
|
|
top_of_stack_offset = (u32_t)
|
|
(pStackMem + stackSize - ((char *)p_local_data));
|
|
|
|
#endif /* CONFIG_THREAD_USERSPACE_LOCAL_DATA */
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
#if defined(CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT) \
|
|
&& defined(CONFIG_USERSPACE)
|
|
/* This is required to work-around the case where the thread
|
|
* is created without using K_THREAD_STACK_SIZEOF() macro in
|
|
* k_thread_create(). If K_THREAD_STACK_SIZEOF() is used, the
|
|
* Guard size has already been take out of stackSize.
|
|
*/
|
|
stackSize -= MPU_GUARD_ALIGN_AND_SIZE;
|
|
#endif
|
|
stackEnd = pStackMem + stackSize;
|
|
|
|
struct __esf *pInitCtx;
|
|
|
|
z_new_thread_init(thread, pStackMem, stackSize, priority,
|
|
options);
|
|
|
|
/* Carve the thread entry struct from the "base" of the stack
|
|
*
|
|
* The initial carved stack frame only needs to contain the basic
|
|
* stack frame (state context), because no FP operations have been
|
|
* performed yet for this thread.
|
|
*/
|
|
pInitCtx = (struct __esf *)(STACK_ROUND_DOWN(stackEnd -
|
|
(char *)top_of_stack_offset - sizeof(struct __basic_sf)));
|
|
|
|
#if defined(CONFIG_USERSPACE)
|
|
if ((options & K_USER) != 0) {
|
|
pInitCtx->basic.pc = (u32_t)z_arch_user_mode_enter;
|
|
} else {
|
|
pInitCtx->basic.pc = (u32_t)z_thread_entry;
|
|
}
|
|
#else
|
|
pInitCtx->basic.pc = (u32_t)z_thread_entry;
|
|
#endif
|
|
|
|
/* force ARM mode by clearing LSB of address */
|
|
pInitCtx->basic.pc &= 0xfffffffe;
|
|
|
|
pInitCtx->basic.a1 = (u32_t)pEntry;
|
|
pInitCtx->basic.a2 = (u32_t)parameter1;
|
|
pInitCtx->basic.a3 = (u32_t)parameter2;
|
|
pInitCtx->basic.a4 = (u32_t)parameter3;
|
|
pInitCtx->basic.xpsr =
|
|
0x01000000UL; /* clear all, thumb bit is 1, even if RO */
|
|
|
|
thread->callee_saved.psp = (u32_t)pInitCtx;
|
|
thread->arch.basepri = 0;
|
|
|
|
#if defined(CONFIG_USERSPACE) || defined(CONFIG_FP_SHARING)
|
|
thread->arch.mode = 0;
|
|
#if defined(CONFIG_USERSPACE)
|
|
thread->arch.priv_stack_start = 0;
|
|
#endif
|
|
#endif
|
|
|
|
/* swap_return_value can contain garbage */
|
|
|
|
/*
|
|
* initial values in all other registers/thread entries are
|
|
* irrelevant.
|
|
*/
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
|
|
FUNC_NORETURN void z_arch_user_mode_enter(k_thread_entry_t user_entry,
|
|
void *p1, void *p2, void *p3)
|
|
{
|
|
|
|
/* Set up privileged stack before entering user mode */
|
|
_current->arch.priv_stack_start =
|
|
(u32_t)z_priv_stack_find(_current->stack_obj);
|
|
|
|
z_arm_userspace_enter(user_entry, p1, p2, p3,
|
|
(u32_t)_current->stack_info.start,
|
|
_current->stack_info.size);
|
|
CODE_UNREACHABLE;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(CONFIG_BUILTIN_STACK_GUARD)
|
|
/*
|
|
* @brief Configure ARM built-in stack guard
|
|
*
|
|
* This function configures per thread stack guards by reprogramming
|
|
* the built-in Process Stack Pointer Limit Register (PSPLIM).
|
|
* The functionality is meant to be used during context switch.
|
|
*
|
|
* @param thread thread info data structure.
|
|
*/
|
|
void configure_builtin_stack_guard(struct k_thread *thread)
|
|
{
|
|
#if defined(CONFIG_USERSPACE)
|
|
if ((thread->arch.mode & CONTROL_nPRIV_Msk) != 0) {
|
|
/* Only configure stack limit for threads in privileged mode
|
|
* (i.e supervisor threads or user threads doing system call).
|
|
* User threads executing in user mode do not require a stack
|
|
* limit protection.
|
|
*/
|
|
return;
|
|
}
|
|
u32_t guard_start = thread->arch.priv_stack_start ?
|
|
(u32_t)thread->arch.priv_stack_start :
|
|
(u32_t)thread->stack_obj;
|
|
|
|
__ASSERT(thread->stack_info.start == ((u32_t)thread->stack_obj),
|
|
"stack_info.start does not point to the start of the"
|
|
"thread allocated area.");
|
|
#else
|
|
u32_t guard_start = thread->stack_info.start;
|
|
#endif
|
|
#if defined(CONFIG_CPU_CORTEX_M_HAS_SPLIM)
|
|
__set_PSPLIM(guard_start);
|
|
#else
|
|
#error "Built-in PSP limit checks not supported by HW"
|
|
#endif
|
|
}
|
|
#endif /* CONFIG_BUILTIN_STACK_GUARD */
|
|
|
|
#if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE)
|
|
|
|
#define IS_MPU_GUARD_VIOLATION(guard_start, fault_addr, stack_ptr) \
|
|
(fault_addr == -EINVAL) ? \
|
|
((fault_addr >= guard_start) && \
|
|
(fault_addr < (guard_start + MPU_GUARD_ALIGN_AND_SIZE)) && \
|
|
(stack_ptr < (guard_start + MPU_GUARD_ALIGN_AND_SIZE))) \
|
|
: \
|
|
(stack_ptr < (guard_start + MPU_GUARD_ALIGN_AND_SIZE))
|
|
|
|
/**
|
|
* @brief Assess occurrence of current thread's stack corruption
|
|
*
|
|
* This function performs an assessment whether a memory fault (on a
|
|
* given memory address) is the result of stack memory corruption of
|
|
* the current thread.
|
|
*
|
|
* Thread stack corruption for supervisor threads or user threads in
|
|
* privilege mode (when User Space is supported) is reported upon an
|
|
* attempt to access the stack guard area (if MPU Stack Guard feature
|
|
* is supported). Additionally the current PSP (process stack pointer)
|
|
* must be pointing inside or below the guard area.
|
|
*
|
|
* Thread stack corruption for user threads in user mode is reported,
|
|
* if the current PSP is pointing below the start of the current
|
|
* thread's stack.
|
|
*
|
|
* Notes:
|
|
* - we assume a fully descending stack,
|
|
* - we assume a stacking error has occurred,
|
|
* - the function shall be called when handling MemManage and Bus fault,
|
|
* and only if a Stacking error has been reported.
|
|
*
|
|
* If stack corruption is detected, the function returns the lowest
|
|
* allowed address where the Stack Pointer can safely point to, to
|
|
* prevent from errors when un-stacking the corrupted stack frame
|
|
* upon exception return.
|
|
*
|
|
* @param fault_addr memory address on which memory access violation
|
|
* has been reported. It can be invalid (-EINVAL),
|
|
* if only Stacking error has been reported.
|
|
* @param psp current address the PSP points to
|
|
*
|
|
* @return The lowest allowed stack frame pointer, if error is a
|
|
* thread stack corruption, otherwise return 0.
|
|
*/
|
|
u32_t z_check_thread_stack_fail(const u32_t fault_addr, const u32_t psp)
|
|
{
|
|
const struct k_thread *thread = _current;
|
|
|
|
if (!thread) {
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_USERSPACE)
|
|
if (thread->arch.priv_stack_start) {
|
|
/* User thread */
|
|
if ((__get_CONTROL() & CONTROL_nPRIV_Msk) == 0) {
|
|
/* User thread in privilege mode */
|
|
if (IS_MPU_GUARD_VIOLATION(
|
|
thread->arch.priv_stack_start,
|
|
fault_addr, psp)) {
|
|
/* Thread's privilege stack corruption */
|
|
return thread->arch.priv_stack_start +
|
|
MPU_GUARD_ALIGN_AND_SIZE;
|
|
}
|
|
} else {
|
|
if (psp < (u32_t)thread->stack_obj) {
|
|
/* Thread's user stack corruption */
|
|
return (u32_t)thread->stack_obj;
|
|
}
|
|
}
|
|
} else {
|
|
/* Supervisor thread */
|
|
if (IS_MPU_GUARD_VIOLATION((u32_t)thread->stack_obj,
|
|
fault_addr, psp)) {
|
|
/* Supervisor thread stack corruption */
|
|
return (u32_t)thread->stack_obj +
|
|
MPU_GUARD_ALIGN_AND_SIZE;
|
|
}
|
|
}
|
|
#else /* CONFIG_USERSPACE */
|
|
if (IS_MPU_GUARD_VIOLATION(thread->stack_info.start,
|
|
fault_addr, psp)) {
|
|
/* Thread stack corruption */
|
|
return thread->stack_info.start +
|
|
MPU_GUARD_ALIGN_AND_SIZE;
|
|
}
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_MPU_STACK_GUARD || CONFIG_USERSPACE */
|