/* * Copyright (c) 2013-2014 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief New thread creation for ARM Cortex-M * * Core thread related primitives for the ARM Cortex-M processor architecture. */ #include #include #include #include #ifdef CONFIG_USERSPACE extern u8_t *z_priv_stack_find(void *obj); #endif /** * * @brief Initialize a new thread from its stack space * * The control structure (thread) is put at the lower address of the stack. An * initial context, to be "restored" by __pendsv(), is put at the other end of * the stack, and thus reusable by the stack when not needed anymore. * * The initial context is an exception stack frame (ESF) since exiting the * PendSV exception will want to pop an ESF. Interestingly, even if the lsb of * an instruction address to jump to must always be set since the CPU always * runs in thumb mode, the ESF expects the real address of the instruction, * with the lsb *not* set (instructions are always aligned on 16 bit halfwords). * Since the compiler automatically sets the lsb of function addresses, we have * to unset it manually before storing it in the 'pc' field of the ESF. * * is currently unused. * * @param stack pointer to the aligned stack memory * @param stackSize size of the available stack memory in bytes * @param pEntry the entry point * @param parameter1 entry point to the first param * @param parameter2 entry point to the second param * @param parameter3 entry point to the third param * @param priority thread priority * @param options thread options: K_ESSENTIAL, K_FP_REGS * * @return N/A */ void z_new_thread(struct k_thread *thread, k_thread_stack_t *stack, size_t stackSize, k_thread_entry_t pEntry, void *parameter1, void *parameter2, void *parameter3, int priority, unsigned int options) { char *pStackMem = Z_THREAD_STACK_BUFFER(stack); char *stackEnd; /* Offset between the top of stack and the high end of stack area. */ u32_t top_of_stack_offset = 0U; Z_ASSERT_VALID_PRIO(priority, pEntry); #if defined(CONFIG_USERSPACE) /* Truncate the stack size to align with the MPU region granularity. * This is done proactively to account for the case when the thread * switches to user mode (thus, its stack area will need to be MPU- * programmed to be assigned unprivileged RW access permission). */ stackSize &= ~(CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE - 1); #ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA /* Reserve space on top of stack for local data. */ u32_t p_local_data = STACK_ROUND_DOWN(pStackMem + stackSize - sizeof(*thread->userspace_local_data)); thread->userspace_local_data = (struct _thread_userspace_local_data *)(p_local_data); /* Top of actual stack must be moved below the user local data. */ top_of_stack_offset = (u32_t) (pStackMem + stackSize - ((char *)p_local_data)); #endif /* CONFIG_THREAD_USERSPACE_LOCAL_DATA */ #endif /* CONFIG_USERSPACE */ #if defined(CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT) \ && defined(CONFIG_USERSPACE) /* This is required to work-around the case where the thread * is created without using K_THREAD_STACK_SIZEOF() macro in * k_thread_create(). If K_THREAD_STACK_SIZEOF() is used, the * Guard size has already been take out of stackSize. */ stackSize -= MPU_GUARD_ALIGN_AND_SIZE; #endif stackEnd = pStackMem + stackSize; struct __esf *pInitCtx; z_new_thread_init(thread, pStackMem, stackSize, priority, options); /* Carve the thread entry struct from the "base" of the stack * * The initial carved stack frame only needs to contain the basic * stack frame (state context), because no FP operations have been * performed yet for this thread. */ pInitCtx = (struct __esf *)(STACK_ROUND_DOWN(stackEnd - (char *)top_of_stack_offset - sizeof(struct __basic_sf))); #if defined(CONFIG_USERSPACE) if ((options & K_USER) != 0) { pInitCtx->basic.pc = (u32_t)z_arch_user_mode_enter; } else { pInitCtx->basic.pc = (u32_t)z_thread_entry; } #else pInitCtx->basic.pc = (u32_t)z_thread_entry; #endif /* force ARM mode by clearing LSB of address */ pInitCtx->basic.pc &= 0xfffffffe; pInitCtx->basic.a1 = (u32_t)pEntry; pInitCtx->basic.a2 = (u32_t)parameter1; pInitCtx->basic.a3 = (u32_t)parameter2; pInitCtx->basic.a4 = (u32_t)parameter3; pInitCtx->basic.xpsr = 0x01000000UL; /* clear all, thumb bit is 1, even if RO */ thread->callee_saved.psp = (u32_t)pInitCtx; thread->arch.basepri = 0; #if defined(CONFIG_USERSPACE) || defined(CONFIG_FP_SHARING) thread->arch.mode = 0; #if defined(CONFIG_USERSPACE) thread->arch.priv_stack_start = 0; #endif #endif /* swap_return_value can contain garbage */ /* * initial values in all other registers/thread entries are * irrelevant. */ } #ifdef CONFIG_USERSPACE FUNC_NORETURN void z_arch_user_mode_enter(k_thread_entry_t user_entry, void *p1, void *p2, void *p3) { /* Set up privileged stack before entering user mode */ _current->arch.priv_stack_start = (u32_t)z_priv_stack_find(_current->stack_obj); z_arm_userspace_enter(user_entry, p1, p2, p3, (u32_t)_current->stack_info.start, _current->stack_info.size); CODE_UNREACHABLE; } #endif #if defined(CONFIG_BUILTIN_STACK_GUARD) /* * @brief Configure ARM built-in stack guard * * This function configures per thread stack guards by reprogramming * the built-in Process Stack Pointer Limit Register (PSPLIM). * The functionality is meant to be used during context switch. * * @param thread thread info data structure. */ void configure_builtin_stack_guard(struct k_thread *thread) { #if defined(CONFIG_USERSPACE) if ((thread->arch.mode & CONTROL_nPRIV_Msk) != 0) { /* Only configure stack limit for threads in privileged mode * (i.e supervisor threads or user threads doing system call). * User threads executing in user mode do not require a stack * limit protection. */ return; } u32_t guard_start = thread->arch.priv_stack_start ? (u32_t)thread->arch.priv_stack_start : (u32_t)thread->stack_obj; __ASSERT(thread->stack_info.start == ((u32_t)thread->stack_obj), "stack_info.start does not point to the start of the" "thread allocated area."); #else u32_t guard_start = thread->stack_info.start; #endif #if defined(CONFIG_CPU_CORTEX_M_HAS_SPLIM) __set_PSPLIM(guard_start); #else #error "Built-in PSP limit checks not supported by HW" #endif } #endif /* CONFIG_BUILTIN_STACK_GUARD */ #if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE) #define IS_MPU_GUARD_VIOLATION(guard_start, fault_addr, stack_ptr) \ (fault_addr == -EINVAL) ? \ ((fault_addr >= guard_start) && \ (fault_addr < (guard_start + MPU_GUARD_ALIGN_AND_SIZE)) && \ (stack_ptr < (guard_start + MPU_GUARD_ALIGN_AND_SIZE))) \ : \ (stack_ptr < (guard_start + MPU_GUARD_ALIGN_AND_SIZE)) /** * @brief Assess occurrence of current thread's stack corruption * * This function performs an assessment whether a memory fault (on a * given memory address) is the result of stack memory corruption of * the current thread. * * Thread stack corruption for supervisor threads or user threads in * privilege mode (when User Space is supported) is reported upon an * attempt to access the stack guard area (if MPU Stack Guard feature * is supported). Additionally the current PSP (process stack pointer) * must be pointing inside or below the guard area. * * Thread stack corruption for user threads in user mode is reported, * if the current PSP is pointing below the start of the current * thread's stack. * * Notes: * - we assume a fully descending stack, * - we assume a stacking error has occurred, * - the function shall be called when handling MemManage and Bus fault, * and only if a Stacking error has been reported. * * If stack corruption is detected, the function returns the lowest * allowed address where the Stack Pointer can safely point to, to * prevent from errors when un-stacking the corrupted stack frame * upon exception return. * * @param fault_addr memory address on which memory access violation * has been reported. It can be invalid (-EINVAL), * if only Stacking error has been reported. * @param psp current address the PSP points to * * @return The lowest allowed stack frame pointer, if error is a * thread stack corruption, otherwise return 0. */ u32_t z_check_thread_stack_fail(const u32_t fault_addr, const u32_t psp) { const struct k_thread *thread = _current; if (!thread) { return 0; } #if defined(CONFIG_USERSPACE) if (thread->arch.priv_stack_start) { /* User thread */ if ((__get_CONTROL() & CONTROL_nPRIV_Msk) == 0) { /* User thread in privilege mode */ if (IS_MPU_GUARD_VIOLATION( thread->arch.priv_stack_start, fault_addr, psp)) { /* Thread's privilege stack corruption */ return thread->arch.priv_stack_start + MPU_GUARD_ALIGN_AND_SIZE; } } else { if (psp < (u32_t)thread->stack_obj) { /* Thread's user stack corruption */ return (u32_t)thread->stack_obj; } } } else { /* Supervisor thread */ if (IS_MPU_GUARD_VIOLATION((u32_t)thread->stack_obj, fault_addr, psp)) { /* Supervisor thread stack corruption */ return (u32_t)thread->stack_obj + MPU_GUARD_ALIGN_AND_SIZE; } } #else /* CONFIG_USERSPACE */ if (IS_MPU_GUARD_VIOLATION(thread->stack_info.start, fault_addr, psp)) { /* Thread stack corruption */ return thread->stack_info.start + MPU_GUARD_ALIGN_AND_SIZE; } #endif /* CONFIG_USERSPACE */ return 0; } #endif /* CONFIG_MPU_STACK_GUARD || CONFIG_USERSPACE */