Since 3466dab804 the generic llext_symbol_name() function abstracts
the use of llext_string() for (non-section) symbols. Define a similar
llext_section_name() function and replace current occurrences of
llext_string() with the proper abstraction.
By extending llext_symbol_name(), this commit also allows to print the
correct name of sections that are referred to by a symbol.
Signed-off-by: Luca Burelli <l.burelli@arduino.cc>
535 lines
18 KiB
C
535 lines
18 KiB
C
/** @file
|
|
* @brief Architecture-specific relocations for RISC-V instruction sets.
|
|
*/
|
|
/*
|
|
* Copyright (c) 2024 CISPA Helmholtz Center for Information Security gGmbH
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include <zephyr/llext/elf.h>
|
|
#include <zephyr/llext/llext.h>
|
|
#include <zephyr/llext/llext_internal.h>
|
|
#include <zephyr/llext/loader.h>
|
|
|
|
#include <zephyr/logging/log.h>
|
|
#include <zephyr/sys/util.h>
|
|
|
|
#include <zephyr/arch/riscv/elf.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
LOG_MODULE_REGISTER(elf, CONFIG_LLEXT_LOG_LEVEL);
|
|
|
|
/*
|
|
* RISC-V relocations commonly use pairs of U-type and I-type instructions.
|
|
* U-type instructions have 20-bit immediates, I-type instructions have 12-bit immediates.
|
|
* Immediates in RISC-V are always sign-extended.
|
|
* Thereby, this type of relocation can reach any address within a 2^31-1 byte range.
|
|
*/
|
|
#define RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE INT32_MAX
|
|
|
|
/* S-type has 12-bit signed immediate */
|
|
#define RISCV_MAX_JUMP_DISTANCE_S_TYPE ((1 << 11) - 1)
|
|
|
|
/* I-type has 12-bit signed immediate also */
|
|
#define RISCV_MAX_JUMP_DISTANCE_I_TYPE ((1 << 11) - 1)
|
|
|
|
/* B-type has 13-bit signed immediate */
|
|
#define RISCV_MAX_JUMP_DISTANCE_B_TYPE ((1 << 12) - 1)
|
|
|
|
/* CB-type has 9-bit signed immediate */
|
|
#define RISCV_MAX_JUMP_DISTANCE_CB_TYPE ((1 << 8) - 1)
|
|
|
|
/* CJ-type has 12-bit signed immediate (last bit implicit 0) */
|
|
#define RISCV_MAX_JUMP_DISTANCE_CJ_TYPE ((1 << 11) - 1)
|
|
|
|
static inline int riscv_relocation_fits(long long jump_target, long long max_distance,
|
|
elf_word reloc_type)
|
|
{
|
|
/*
|
|
* two's complement encoding
|
|
* e.g., [-128=0b10000000, 127=0b01111111] encodable with 8 bits
|
|
*/
|
|
if (jump_target < 0) {
|
|
max_distance++;
|
|
}
|
|
if (llabs(jump_target) > max_distance) {
|
|
LOG_ERR("%lld byte relocation is not possible for type %" PRIu64 " (max %lld)!",
|
|
jump_target, (uint64_t)reloc_type, max_distance);
|
|
return -ENOEXEC; /* jump too far */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static size_t riscv_last_rel_idx;
|
|
|
|
/**
|
|
* @brief On RISC-V, PC-relative relocations (PCREL_LO12_I, PCREL_LO12_S) do not refer to
|
|
* the actual symbol. Instead, they refer to the location of a different instruction in the
|
|
* same section, which has a PCREL_HI20 relocation. The relocation offset is then computed based
|
|
* on the location and symbol from the HI20 relocation. 20 bits from the offset go into the
|
|
* instruction that has the HI20 relocation, and 12 bits go into the PCREL_LO12 instruction.
|
|
*
|
|
* @param[in] ldr llext loader
|
|
* @param[in] ext current extension
|
|
* @param[in] pcrel_lo12 the elf relocation structure for the PCREL_LO12I/S relocation.
|
|
* @param[in] shdr ELF section header for the relocation
|
|
* @param[in] sym ELF symbol for PCREL_LO12I
|
|
* @param[out] link_addr_out computed link address
|
|
*
|
|
*/
|
|
static int llext_riscv_find_sym_pcrel(struct llext_loader *ldr, struct llext *ext,
|
|
const elf_rela_t *pcrel_lo12, const elf_shdr_t *shdr,
|
|
const elf_sym_t *sym, intptr_t *link_addr_out)
|
|
{
|
|
int ret;
|
|
elf_rela_t candidate;
|
|
uintptr_t candidate_loc;
|
|
elf_word reloc_type;
|
|
elf_sym_t candidate_sym;
|
|
uintptr_t link_addr;
|
|
const char *symbol_name;
|
|
int iteration_start = riscv_last_rel_idx;
|
|
bool is_first = true;
|
|
const elf_word rel_cnt = shdr->sh_size / shdr->sh_entsize;
|
|
const uintptr_t sect_base = (uintptr_t)llext_loaded_sect_ptr(ldr, ext, shdr->sh_info);
|
|
bool found_candidate = false;
|
|
|
|
if (iteration_start >= rel_cnt) {
|
|
/* value left over from a different section */
|
|
iteration_start = 0;
|
|
}
|
|
|
|
reloc_type = ELF32_R_TYPE(pcrel_lo12->r_info);
|
|
|
|
if (reloc_type != R_RISCV_PCREL_LO12_I && reloc_type != R_RISCV_PCREL_LO12_S) {
|
|
/* this function does not apply - the symbol is already correct */
|
|
return 0;
|
|
}
|
|
|
|
for (int i = iteration_start; i != iteration_start || is_first; i++) {
|
|
|
|
is_first = false;
|
|
|
|
/* get each relocation entry */
|
|
ret = llext_seek(ldr, shdr->sh_offset + i * shdr->sh_entsize);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = llext_read(ldr, &candidate, shdr->sh_entsize);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* FIXME currently, RISC-V relocations all fit in ELF_32_R_TYPE */
|
|
reloc_type = ELF32_R_TYPE(candidate.r_info);
|
|
|
|
candidate_loc = sect_base + candidate.r_offset;
|
|
|
|
/*
|
|
* RISC-V ELF specification: "value" of the symbol for the PCREL_LO12 relocation
|
|
* is actually the offset of the PCREL_HI20 relocation instruction from section
|
|
* start
|
|
*/
|
|
if (candidate.r_offset == sym->st_value && reloc_type == R_RISCV_PCREL_HI20) {
|
|
found_candidate = true;
|
|
|
|
/*
|
|
* start here in next iteration
|
|
* it is fairly likely (albeit not guaranteed) that we require PCREL_HI20
|
|
* relocations in order
|
|
* we can safely write this even if an error occurs after the loop -
|
|
* in that case,we can safely abort the execution anyway
|
|
*/
|
|
riscv_last_rel_idx = i;
|
|
|
|
break;
|
|
}
|
|
|
|
if (i + 1 >= rel_cnt) {
|
|
/* wrap around and search in previously processed indices as well */
|
|
i = -1;
|
|
}
|
|
}
|
|
|
|
if (!found_candidate) {
|
|
LOG_ERR("Could not find R_RISCV_PCREL_HI20 relocation for "
|
|
"R_RISCV_PCREL_LO12 relocation!");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
/* we found a match - need to compute the relocation for this instruction */
|
|
/* lower 12 bits go to the PCREL_LO12 relocation */
|
|
|
|
/* get corresponding / "actual" symbol */
|
|
ret = llext_seek(ldr, ldr->sects[LLEXT_MEM_SYMTAB].sh_offset +
|
|
ELF_R_SYM(candidate.r_info) * sizeof(elf_sym_t));
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = llext_read(ldr, &candidate_sym, sizeof(elf_sym_t));
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
symbol_name = llext_symbol_name(ldr, ext, &candidate_sym);
|
|
|
|
ret = llext_lookup_symbol(ldr, ext, &link_addr, &candidate, &candidate_sym,
|
|
symbol_name, shdr);
|
|
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
*link_addr_out = (intptr_t)(link_addr + candidate.r_addend - candidate_loc); /* S + A - P */
|
|
|
|
/* found the matching entry */
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief RISC-V specific function for relocating partially linked ELF binaries
|
|
*
|
|
* This implementation follows the official RISC-V specification:
|
|
* https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-elf.adoc
|
|
*
|
|
*/
|
|
int arch_elf_relocate(struct llext_loader *ldr, struct llext *ext, elf_rela_t *rel,
|
|
const elf_shdr_t *shdr)
|
|
{
|
|
/* FIXME currently, RISC-V relocations all fit in ELF_32_R_TYPE */
|
|
elf_word reloc_type = ELF32_R_TYPE(rel->r_info);
|
|
const uintptr_t load_bias = (uintptr_t)ext->mem[LLEXT_MEM_TEXT];
|
|
const uintptr_t loc_unsigned = llext_get_reloc_instruction_location(ldr, ext,
|
|
shdr->sh_info, rel);
|
|
elf_sym_t sym;
|
|
uintptr_t sym_base_addr_unsigned;
|
|
const char *sym_name;
|
|
int ret;
|
|
|
|
ret = llext_read_symbol(ldr, ext, rel, &sym);
|
|
if (ret != 0) {
|
|
LOG_ERR("Could not read symbol from binary!");
|
|
return ret;
|
|
}
|
|
|
|
sym_name = llext_symbol_name(ldr, ext, &sym);
|
|
ret = llext_lookup_symbol(ldr, ext, &sym_base_addr_unsigned, rel, &sym, sym_name, shdr);
|
|
|
|
if (ret != 0) {
|
|
LOG_ERR("Could not find symbol %s!", sym_name);
|
|
return ret;
|
|
}
|
|
/*
|
|
* The RISC-V specification uses the following symbolic names for the relocations:
|
|
*
|
|
* A - addend (rel->r_addend)
|
|
* B - base address (load_bias)
|
|
* G - global offset table (not supported yet)
|
|
* P - position of the relocation (loc)
|
|
* S - symbol value (sym_base_addr)
|
|
* V - value at the relocation position (*loc)
|
|
* GP - value of __global_pointer$ (not supported yet)
|
|
* TLSMODULE - TLS module for the object (not supported yet)
|
|
* TLSOFFSET - TLS static block for the object (not supported yet)
|
|
*/
|
|
intptr_t loc = (intptr_t)loc_unsigned;
|
|
uint8_t *loc8 = (uint8_t *)loc, tmp8;
|
|
uint16_t *loc16 = (uint16_t *)loc, tmp16;
|
|
uint32_t *loc32 = (uint32_t *)loc, tmp32;
|
|
uint64_t *loc64 = (uint64_t *)loc, tmp64;
|
|
/* uint32_t or uint64_t */
|
|
r_riscv_wordclass_t *loc_word = (r_riscv_wordclass_t *)loc;
|
|
uint32_t modified_operand;
|
|
uint16_t modified_compressed_operand;
|
|
int32_t imm8;
|
|
long long original_imm8, jump_target;
|
|
int16_t compressed_imm8;
|
|
__typeof__(rel->r_addend) target_alignment = 1;
|
|
intptr_t sym_base_addr = (intptr_t)sym_base_addr_unsigned;
|
|
|
|
/*
|
|
* For HI20/LO12 ("PCREL") relocation pairs, we need a helper function to
|
|
* determine the address for the LO12 relocation, as it depends on the
|
|
* value in the HI20 relocation.
|
|
*/
|
|
ret = llext_riscv_find_sym_pcrel(ldr, ext, rel, shdr, &sym, &sym_base_addr);
|
|
|
|
if (ret != 0) {
|
|
LOG_ERR("Failed to resolve RISC-V PCREL relocation for symbol %s at %p "
|
|
"with base address %p load address %p type %" PRIu64,
|
|
sym_name, (void *)loc, (void *)sym_base_addr, (void *)load_bias,
|
|
(uint64_t)reloc_type);
|
|
return ret;
|
|
}
|
|
|
|
LOG_DBG("Relocating symbol %s at %p with base address %p load address %p type %" PRIu64,
|
|
sym_name, (void *)loc, (void *)sym_base_addr, (void *)load_bias,
|
|
(uint64_t)reloc_type);
|
|
|
|
/* FIXME not all types of relocations currently supported, especially TLS */
|
|
|
|
switch (reloc_type) {
|
|
case R_RISCV_NONE:
|
|
break;
|
|
case R_RISCV_32:
|
|
jump_target = sym_base_addr + rel->r_addend; /* S + A */
|
|
UNALIGNED_PUT((uint32_t)jump_target, loc32);
|
|
return riscv_relocation_fits(jump_target, INT32_MAX, reloc_type);
|
|
case R_RISCV_64:
|
|
/* full 64-bit range, need no range check */
|
|
UNALIGNED_PUT(sym_base_addr + rel->r_addend, loc64); /* S + A */
|
|
break;
|
|
case R_RISCV_RELATIVE:
|
|
/* either full 32-bit or 64-bit range, need no range check */
|
|
UNALIGNED_PUT(load_bias + rel->r_addend, loc_word); /* B + A */
|
|
break;
|
|
case R_RISCV_JUMP_SLOT:
|
|
/* either full 32-bit or 64-bit range, need no range check */
|
|
UNALIGNED_PUT(sym_base_addr, loc_word); /* S */
|
|
break;
|
|
case R_RISCV_BRANCH:
|
|
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
|
|
modified_operand = UNALIGNED_GET(loc32);
|
|
imm8 = jump_target;
|
|
modified_operand = R_RISCV_CLEAR_BTYPE_IMM8(modified_operand);
|
|
modified_operand = R_RISCV_SET_BTYPE_IMM8(modified_operand, imm8);
|
|
UNALIGNED_PUT(modified_operand, loc32);
|
|
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_B_TYPE,
|
|
reloc_type);
|
|
case R_RISCV_JAL:
|
|
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
|
|
modified_operand = UNALIGNED_GET(loc32);
|
|
imm8 = jump_target;
|
|
modified_operand = R_RISCV_CLEAR_JTYPE_IMM8(modified_operand);
|
|
modified_operand = R_RISCV_SET_JTYPE_IMM8(modified_operand, imm8);
|
|
UNALIGNED_PUT(modified_operand, loc32);
|
|
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
|
|
reloc_type);
|
|
case R_RISCV_CALL:
|
|
case R_RISCV_CALL_PLT:
|
|
case R_RISCV_PCREL_HI20:
|
|
modified_operand = UNALIGNED_GET(loc32);
|
|
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
|
|
imm8 = jump_target;
|
|
/* bit 12 of the immediate goes to I-type instruction and might
|
|
* change the sign of the number
|
|
*/
|
|
/* in order to avoid that, we add 1 to the upper immediate if bit 12 is one */
|
|
/* see RISC-V la pseudo instruction */
|
|
imm8 += imm8 & 0x800;
|
|
|
|
original_imm8 = imm8;
|
|
|
|
modified_operand = R_RISCV_CLEAR_UTYPE_IMM8(modified_operand);
|
|
modified_operand = R_RISCV_SET_UTYPE_IMM8(modified_operand, imm8);
|
|
UNALIGNED_PUT(modified_operand, loc32);
|
|
|
|
if (reloc_type != R_RISCV_PCREL_HI20) {
|
|
/* PCREL_HI20 is only U-type, not truly U+I-type */
|
|
/* for the others, need to also modify following I-type */
|
|
loc32++;
|
|
|
|
imm8 = jump_target;
|
|
|
|
modified_operand = UNALIGNED_GET(loc32);
|
|
modified_operand = R_RISCV_CLEAR_ITYPE_IMM8(modified_operand);
|
|
modified_operand = R_RISCV_SET_ITYPE_IMM8(modified_operand, imm8);
|
|
UNALIGNED_PUT(modified_operand, loc32);
|
|
}
|
|
|
|
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
|
|
reloc_type);
|
|
case R_RISCV_PCREL_LO12_I:
|
|
/*
|
|
* Jump target is resolved in llext_riscv_find_sym_pcrel in llext_link.c
|
|
* as it depends on other relocations.
|
|
*/
|
|
modified_operand = UNALIGNED_GET(loc32);
|
|
imm8 = (int32_t)sym_base_addr; /* already computed */
|
|
modified_operand = R_RISCV_CLEAR_ITYPE_IMM8(modified_operand);
|
|
modified_operand = R_RISCV_SET_ITYPE_IMM8(modified_operand, imm8);
|
|
UNALIGNED_PUT(modified_operand, loc32);
|
|
/* we have checked that this fits with the associated relocation */
|
|
break;
|
|
case R_RISCV_PCREL_LO12_S:
|
|
/*
|
|
* Jump target is resolved in llext_riscv_find_sym_pcrel in llext_link.c
|
|
* as it depends on other relocations.
|
|
*/
|
|
modified_operand = UNALIGNED_GET(loc32);
|
|
imm8 = (int32_t)sym_base_addr; /* already computed */
|
|
modified_operand = R_RISCV_CLEAR_STYPE_IMM8(modified_operand);
|
|
modified_operand = R_RISCV_SET_STYPE_IMM8(modified_operand, imm8);
|
|
UNALIGNED_PUT(modified_operand, loc32);
|
|
/* we have checked that this fits with the associated relocation */
|
|
break;
|
|
case R_RISCV_HI20:
|
|
jump_target = sym_base_addr + rel->r_addend; /* S + A */
|
|
modified_operand = UNALIGNED_GET(loc32);
|
|
imm8 = jump_target;
|
|
/* bit 12 of the immediate goes to I-type instruction and might
|
|
* change the sign of the number
|
|
*/
|
|
/* in order to avoid that, we add 1 to the upper immediate if bit 12 is one*/
|
|
/* see RISC-V la pseudo instruction */
|
|
original_imm8 = imm8;
|
|
imm8 += imm8 & 0x800;
|
|
modified_operand = R_RISCV_CLEAR_UTYPE_IMM8(modified_operand);
|
|
modified_operand = R_RISCV_SET_UTYPE_IMM8(modified_operand, imm8);
|
|
UNALIGNED_PUT(modified_operand, loc32);
|
|
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
|
|
reloc_type);
|
|
case R_RISCV_LO12_I:
|
|
modified_operand = UNALIGNED_GET(loc32);
|
|
jump_target = sym_base_addr + rel->r_addend; /* S + A */
|
|
imm8 = jump_target;
|
|
/* this is always used with R_RISCV_HI20 */
|
|
modified_operand = R_RISCV_CLEAR_ITYPE_IMM8(modified_operand);
|
|
modified_operand = R_RISCV_SET_ITYPE_IMM8(modified_operand, imm8);
|
|
UNALIGNED_PUT(modified_operand, loc32);
|
|
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
|
|
reloc_type);
|
|
case R_RISCV_LO12_S:
|
|
modified_operand = UNALIGNED_GET(loc32);
|
|
imm8 = sym_base_addr + rel->r_addend; /* S + A */
|
|
/*
|
|
* S-type is used for stores/loads etc.
|
|
* size check is done at compile time, as it depends on the size of
|
|
* the structure we are trying to load/store
|
|
*/
|
|
modified_operand = R_RISCV_CLEAR_STYPE_IMM8(modified_operand);
|
|
modified_operand = R_RISCV_SET_STYPE_IMM8(modified_operand, imm8);
|
|
UNALIGNED_PUT(modified_operand, loc32);
|
|
break;
|
|
/* for add/sub/set, compiler needs to ensure that the ELF sections are close enough */
|
|
case R_RISCV_ADD8:
|
|
tmp8 = UNALIGNED_GET(loc8);
|
|
tmp8 += sym_base_addr + rel->r_addend; /* V + S + A */
|
|
UNALIGNED_PUT(tmp8, loc8);
|
|
break;
|
|
case R_RISCV_ADD16:
|
|
tmp16 = UNALIGNED_GET(loc16);
|
|
tmp16 += sym_base_addr + rel->r_addend; /* V + S + A */
|
|
UNALIGNED_PUT(tmp16, loc16);
|
|
break;
|
|
case R_RISCV_ADD32:
|
|
tmp32 = UNALIGNED_GET(loc32);
|
|
tmp32 += sym_base_addr + rel->r_addend; /* V + S + A */
|
|
UNALIGNED_PUT(tmp32, loc32);
|
|
break;
|
|
case R_RISCV_ADD64:
|
|
tmp64 = UNALIGNED_GET(loc64);
|
|
tmp64 += sym_base_addr + rel->r_addend; /* V + S + A */
|
|
UNALIGNED_PUT(tmp64, loc64);
|
|
break;
|
|
case R_RISCV_SUB8:
|
|
tmp8 = UNALIGNED_GET(loc8);
|
|
tmp8 -= sym_base_addr + rel->r_addend; /* V - S - A */
|
|
UNALIGNED_PUT(tmp8, loc8);
|
|
break;
|
|
case R_RISCV_SUB16:
|
|
tmp16 = UNALIGNED_GET(loc16);
|
|
tmp16 -= sym_base_addr + rel->r_addend; /* V - S - A */
|
|
UNALIGNED_PUT(tmp16, loc16);
|
|
break;
|
|
case R_RISCV_SUB32:
|
|
tmp32 = UNALIGNED_GET(loc32);
|
|
tmp32 -= sym_base_addr + rel->r_addend; /* V - S - A */
|
|
UNALIGNED_PUT(tmp32, loc32);
|
|
break;
|
|
case R_RISCV_SUB64:
|
|
tmp64 = UNALIGNED_GET(loc64);
|
|
tmp64 -= sym_base_addr + rel->r_addend; /* V - S - A */
|
|
UNALIGNED_PUT(tmp64, loc64);
|
|
break;
|
|
case R_RISCV_SUB6:
|
|
tmp8 = UNALIGNED_GET(loc8) & (0x1F);
|
|
UNALIGNED_PUT(tmp8, loc8);
|
|
tmp8 = tmp8 - sym_base_addr - rel->r_addend; /* V - S - A */
|
|
tmp8 = tmp8 & (0x1F);
|
|
tmp8 = tmp8 | UNALIGNED_GET(loc8);
|
|
UNALIGNED_PUT(tmp8, loc8);
|
|
break;
|
|
case R_RISCV_SET6:
|
|
tmp8 = UNALIGNED_GET(loc8) & (0x1F);
|
|
UNALIGNED_PUT(tmp8, loc8);
|
|
tmp8 = sym_base_addr + rel->r_addend; /* S + A */
|
|
tmp8 = tmp8 | UNALIGNED_GET(loc8);
|
|
UNALIGNED_PUT(tmp8, loc8);
|
|
break;
|
|
case R_RISCV_SET8:
|
|
tmp8 = sym_base_addr + rel->r_addend; /* S + A */
|
|
UNALIGNED_PUT(tmp8, loc8);
|
|
break;
|
|
case R_RISCV_SET16:
|
|
tmp16 = sym_base_addr + rel->r_addend; /* S + A */
|
|
UNALIGNED_PUT(tmp16, loc16);
|
|
break;
|
|
case R_RISCV_SET32:
|
|
tmp32 = sym_base_addr + rel->r_addend; /* S + A */
|
|
UNALIGNED_PUT(tmp32, loc32);
|
|
break;
|
|
case R_RISCV_32_PCREL:
|
|
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
|
|
tmp32 = jump_target;
|
|
UNALIGNED_PUT(tmp32, loc32);
|
|
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
|
|
reloc_type);
|
|
case R_RISCV_PLT32:
|
|
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
|
|
tmp32 = jump_target;
|
|
UNALIGNED_PUT(tmp32, loc32);
|
|
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
|
|
reloc_type);
|
|
case R_RISCV_RVC_BRANCH:
|
|
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
|
|
modified_compressed_operand = UNALIGNED_GET(loc16);
|
|
compressed_imm8 = jump_target;
|
|
modified_compressed_operand =
|
|
R_RISCV_CLEAR_CBTYPE_IMM8(modified_compressed_operand);
|
|
modified_compressed_operand =
|
|
R_RISCV_SET_CBTYPE_IMM8(modified_compressed_operand, compressed_imm8);
|
|
UNALIGNED_PUT(modified_compressed_operand, loc16);
|
|
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_CB_TYPE,
|
|
reloc_type);
|
|
case R_RISCV_RVC_JUMP:
|
|
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
|
|
modified_compressed_operand = UNALIGNED_GET(loc16);
|
|
compressed_imm8 = jump_target;
|
|
modified_compressed_operand =
|
|
R_RISCV_CLEAR_CJTYPE_IMM8(modified_compressed_operand);
|
|
modified_compressed_operand =
|
|
R_RISCV_SET_CJTYPE_IMM8(modified_compressed_operand, compressed_imm8);
|
|
UNALIGNED_PUT(modified_compressed_operand, loc16);
|
|
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_CJ_TYPE,
|
|
reloc_type);
|
|
case R_RISCV_ALIGN:
|
|
/* we are supposed to move the symbol such that it is aligned to the next power of
|
|
* two >= addend
|
|
*/
|
|
/* this involves moving the symbol */
|
|
while (target_alignment < rel->r_addend) {
|
|
target_alignment *= 2;
|
|
}
|
|
LOG_ERR("Symbol %s with location %p requires alignment to %" PRIu64 " bytes!",
|
|
sym_name, (void *)loc, (uint64_t)target_alignment);
|
|
LOG_ERR("Alignment relocation is currently not supported!");
|
|
return -ENOEXEC;
|
|
/* ignored, this is primarily intended for removing instructions during link-time
|
|
* optimization
|
|
*/
|
|
case R_RISCV_RELAX:
|
|
break;
|
|
default:
|
|
LOG_ERR("Unsupported relocation type: %" PRIu64 " for symbol: %s",
|
|
(uint64_t)reloc_type, sym_name);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
return 0;
|
|
}
|