zephyr/arch/riscv/core/elf.c
Luca Burelli 219cde6621 llext: avoid direct llext_string() usage
Since 3466dab804 the generic llext_symbol_name() function abstracts
the use of llext_string() for (non-section) symbols. Define a similar
llext_section_name() function and replace current occurrences of
llext_string() with the proper abstraction.

By extending llext_symbol_name(), this commit also allows to print the
correct name of sections that are referred to by a symbol.

Signed-off-by: Luca Burelli <l.burelli@arduino.cc>
2025-03-17 19:58:15 +01:00

535 lines
18 KiB
C

/** @file
* @brief Architecture-specific relocations for RISC-V instruction sets.
*/
/*
* Copyright (c) 2024 CISPA Helmholtz Center for Information Security gGmbH
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/llext/elf.h>
#include <zephyr/llext/llext.h>
#include <zephyr/llext/llext_internal.h>
#include <zephyr/llext/loader.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/util.h>
#include <zephyr/arch/riscv/elf.h>
#include <stdlib.h>
LOG_MODULE_REGISTER(elf, CONFIG_LLEXT_LOG_LEVEL);
/*
* RISC-V relocations commonly use pairs of U-type and I-type instructions.
* U-type instructions have 20-bit immediates, I-type instructions have 12-bit immediates.
* Immediates in RISC-V are always sign-extended.
* Thereby, this type of relocation can reach any address within a 2^31-1 byte range.
*/
#define RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE INT32_MAX
/* S-type has 12-bit signed immediate */
#define RISCV_MAX_JUMP_DISTANCE_S_TYPE ((1 << 11) - 1)
/* I-type has 12-bit signed immediate also */
#define RISCV_MAX_JUMP_DISTANCE_I_TYPE ((1 << 11) - 1)
/* B-type has 13-bit signed immediate */
#define RISCV_MAX_JUMP_DISTANCE_B_TYPE ((1 << 12) - 1)
/* CB-type has 9-bit signed immediate */
#define RISCV_MAX_JUMP_DISTANCE_CB_TYPE ((1 << 8) - 1)
/* CJ-type has 12-bit signed immediate (last bit implicit 0) */
#define RISCV_MAX_JUMP_DISTANCE_CJ_TYPE ((1 << 11) - 1)
static inline int riscv_relocation_fits(long long jump_target, long long max_distance,
elf_word reloc_type)
{
/*
* two's complement encoding
* e.g., [-128=0b10000000, 127=0b01111111] encodable with 8 bits
*/
if (jump_target < 0) {
max_distance++;
}
if (llabs(jump_target) > max_distance) {
LOG_ERR("%lld byte relocation is not possible for type %" PRIu64 " (max %lld)!",
jump_target, (uint64_t)reloc_type, max_distance);
return -ENOEXEC; /* jump too far */
}
return 0;
}
static size_t riscv_last_rel_idx;
/**
* @brief On RISC-V, PC-relative relocations (PCREL_LO12_I, PCREL_LO12_S) do not refer to
* the actual symbol. Instead, they refer to the location of a different instruction in the
* same section, which has a PCREL_HI20 relocation. The relocation offset is then computed based
* on the location and symbol from the HI20 relocation. 20 bits from the offset go into the
* instruction that has the HI20 relocation, and 12 bits go into the PCREL_LO12 instruction.
*
* @param[in] ldr llext loader
* @param[in] ext current extension
* @param[in] pcrel_lo12 the elf relocation structure for the PCREL_LO12I/S relocation.
* @param[in] shdr ELF section header for the relocation
* @param[in] sym ELF symbol for PCREL_LO12I
* @param[out] link_addr_out computed link address
*
*/
static int llext_riscv_find_sym_pcrel(struct llext_loader *ldr, struct llext *ext,
const elf_rela_t *pcrel_lo12, const elf_shdr_t *shdr,
const elf_sym_t *sym, intptr_t *link_addr_out)
{
int ret;
elf_rela_t candidate;
uintptr_t candidate_loc;
elf_word reloc_type;
elf_sym_t candidate_sym;
uintptr_t link_addr;
const char *symbol_name;
int iteration_start = riscv_last_rel_idx;
bool is_first = true;
const elf_word rel_cnt = shdr->sh_size / shdr->sh_entsize;
const uintptr_t sect_base = (uintptr_t)llext_loaded_sect_ptr(ldr, ext, shdr->sh_info);
bool found_candidate = false;
if (iteration_start >= rel_cnt) {
/* value left over from a different section */
iteration_start = 0;
}
reloc_type = ELF32_R_TYPE(pcrel_lo12->r_info);
if (reloc_type != R_RISCV_PCREL_LO12_I && reloc_type != R_RISCV_PCREL_LO12_S) {
/* this function does not apply - the symbol is already correct */
return 0;
}
for (int i = iteration_start; i != iteration_start || is_first; i++) {
is_first = false;
/* get each relocation entry */
ret = llext_seek(ldr, shdr->sh_offset + i * shdr->sh_entsize);
if (ret != 0) {
return ret;
}
ret = llext_read(ldr, &candidate, shdr->sh_entsize);
if (ret != 0) {
return ret;
}
/* FIXME currently, RISC-V relocations all fit in ELF_32_R_TYPE */
reloc_type = ELF32_R_TYPE(candidate.r_info);
candidate_loc = sect_base + candidate.r_offset;
/*
* RISC-V ELF specification: "value" of the symbol for the PCREL_LO12 relocation
* is actually the offset of the PCREL_HI20 relocation instruction from section
* start
*/
if (candidate.r_offset == sym->st_value && reloc_type == R_RISCV_PCREL_HI20) {
found_candidate = true;
/*
* start here in next iteration
* it is fairly likely (albeit not guaranteed) that we require PCREL_HI20
* relocations in order
* we can safely write this even if an error occurs after the loop -
* in that case,we can safely abort the execution anyway
*/
riscv_last_rel_idx = i;
break;
}
if (i + 1 >= rel_cnt) {
/* wrap around and search in previously processed indices as well */
i = -1;
}
}
if (!found_candidate) {
LOG_ERR("Could not find R_RISCV_PCREL_HI20 relocation for "
"R_RISCV_PCREL_LO12 relocation!");
return -ENOEXEC;
}
/* we found a match - need to compute the relocation for this instruction */
/* lower 12 bits go to the PCREL_LO12 relocation */
/* get corresponding / "actual" symbol */
ret = llext_seek(ldr, ldr->sects[LLEXT_MEM_SYMTAB].sh_offset +
ELF_R_SYM(candidate.r_info) * sizeof(elf_sym_t));
if (ret != 0) {
return ret;
}
ret = llext_read(ldr, &candidate_sym, sizeof(elf_sym_t));
if (ret != 0) {
return ret;
}
symbol_name = llext_symbol_name(ldr, ext, &candidate_sym);
ret = llext_lookup_symbol(ldr, ext, &link_addr, &candidate, &candidate_sym,
symbol_name, shdr);
if (ret != 0) {
return ret;
}
*link_addr_out = (intptr_t)(link_addr + candidate.r_addend - candidate_loc); /* S + A - P */
/* found the matching entry */
return 0;
}
/**
* @brief RISC-V specific function for relocating partially linked ELF binaries
*
* This implementation follows the official RISC-V specification:
* https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-elf.adoc
*
*/
int arch_elf_relocate(struct llext_loader *ldr, struct llext *ext, elf_rela_t *rel,
const elf_shdr_t *shdr)
{
/* FIXME currently, RISC-V relocations all fit in ELF_32_R_TYPE */
elf_word reloc_type = ELF32_R_TYPE(rel->r_info);
const uintptr_t load_bias = (uintptr_t)ext->mem[LLEXT_MEM_TEXT];
const uintptr_t loc_unsigned = llext_get_reloc_instruction_location(ldr, ext,
shdr->sh_info, rel);
elf_sym_t sym;
uintptr_t sym_base_addr_unsigned;
const char *sym_name;
int ret;
ret = llext_read_symbol(ldr, ext, rel, &sym);
if (ret != 0) {
LOG_ERR("Could not read symbol from binary!");
return ret;
}
sym_name = llext_symbol_name(ldr, ext, &sym);
ret = llext_lookup_symbol(ldr, ext, &sym_base_addr_unsigned, rel, &sym, sym_name, shdr);
if (ret != 0) {
LOG_ERR("Could not find symbol %s!", sym_name);
return ret;
}
/*
* The RISC-V specification uses the following symbolic names for the relocations:
*
* A - addend (rel->r_addend)
* B - base address (load_bias)
* G - global offset table (not supported yet)
* P - position of the relocation (loc)
* S - symbol value (sym_base_addr)
* V - value at the relocation position (*loc)
* GP - value of __global_pointer$ (not supported yet)
* TLSMODULE - TLS module for the object (not supported yet)
* TLSOFFSET - TLS static block for the object (not supported yet)
*/
intptr_t loc = (intptr_t)loc_unsigned;
uint8_t *loc8 = (uint8_t *)loc, tmp8;
uint16_t *loc16 = (uint16_t *)loc, tmp16;
uint32_t *loc32 = (uint32_t *)loc, tmp32;
uint64_t *loc64 = (uint64_t *)loc, tmp64;
/* uint32_t or uint64_t */
r_riscv_wordclass_t *loc_word = (r_riscv_wordclass_t *)loc;
uint32_t modified_operand;
uint16_t modified_compressed_operand;
int32_t imm8;
long long original_imm8, jump_target;
int16_t compressed_imm8;
__typeof__(rel->r_addend) target_alignment = 1;
intptr_t sym_base_addr = (intptr_t)sym_base_addr_unsigned;
/*
* For HI20/LO12 ("PCREL") relocation pairs, we need a helper function to
* determine the address for the LO12 relocation, as it depends on the
* value in the HI20 relocation.
*/
ret = llext_riscv_find_sym_pcrel(ldr, ext, rel, shdr, &sym, &sym_base_addr);
if (ret != 0) {
LOG_ERR("Failed to resolve RISC-V PCREL relocation for symbol %s at %p "
"with base address %p load address %p type %" PRIu64,
sym_name, (void *)loc, (void *)sym_base_addr, (void *)load_bias,
(uint64_t)reloc_type);
return ret;
}
LOG_DBG("Relocating symbol %s at %p with base address %p load address %p type %" PRIu64,
sym_name, (void *)loc, (void *)sym_base_addr, (void *)load_bias,
(uint64_t)reloc_type);
/* FIXME not all types of relocations currently supported, especially TLS */
switch (reloc_type) {
case R_RISCV_NONE:
break;
case R_RISCV_32:
jump_target = sym_base_addr + rel->r_addend; /* S + A */
UNALIGNED_PUT((uint32_t)jump_target, loc32);
return riscv_relocation_fits(jump_target, INT32_MAX, reloc_type);
case R_RISCV_64:
/* full 64-bit range, need no range check */
UNALIGNED_PUT(sym_base_addr + rel->r_addend, loc64); /* S + A */
break;
case R_RISCV_RELATIVE:
/* either full 32-bit or 64-bit range, need no range check */
UNALIGNED_PUT(load_bias + rel->r_addend, loc_word); /* B + A */
break;
case R_RISCV_JUMP_SLOT:
/* either full 32-bit or 64-bit range, need no range check */
UNALIGNED_PUT(sym_base_addr, loc_word); /* S */
break;
case R_RISCV_BRANCH:
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
modified_operand = UNALIGNED_GET(loc32);
imm8 = jump_target;
modified_operand = R_RISCV_CLEAR_BTYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_BTYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_B_TYPE,
reloc_type);
case R_RISCV_JAL:
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
modified_operand = UNALIGNED_GET(loc32);
imm8 = jump_target;
modified_operand = R_RISCV_CLEAR_JTYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_JTYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
reloc_type);
case R_RISCV_CALL:
case R_RISCV_CALL_PLT:
case R_RISCV_PCREL_HI20:
modified_operand = UNALIGNED_GET(loc32);
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
imm8 = jump_target;
/* bit 12 of the immediate goes to I-type instruction and might
* change the sign of the number
*/
/* in order to avoid that, we add 1 to the upper immediate if bit 12 is one */
/* see RISC-V la pseudo instruction */
imm8 += imm8 & 0x800;
original_imm8 = imm8;
modified_operand = R_RISCV_CLEAR_UTYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_UTYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
if (reloc_type != R_RISCV_PCREL_HI20) {
/* PCREL_HI20 is only U-type, not truly U+I-type */
/* for the others, need to also modify following I-type */
loc32++;
imm8 = jump_target;
modified_operand = UNALIGNED_GET(loc32);
modified_operand = R_RISCV_CLEAR_ITYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_ITYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
}
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
reloc_type);
case R_RISCV_PCREL_LO12_I:
/*
* Jump target is resolved in llext_riscv_find_sym_pcrel in llext_link.c
* as it depends on other relocations.
*/
modified_operand = UNALIGNED_GET(loc32);
imm8 = (int32_t)sym_base_addr; /* already computed */
modified_operand = R_RISCV_CLEAR_ITYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_ITYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
/* we have checked that this fits with the associated relocation */
break;
case R_RISCV_PCREL_LO12_S:
/*
* Jump target is resolved in llext_riscv_find_sym_pcrel in llext_link.c
* as it depends on other relocations.
*/
modified_operand = UNALIGNED_GET(loc32);
imm8 = (int32_t)sym_base_addr; /* already computed */
modified_operand = R_RISCV_CLEAR_STYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_STYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
/* we have checked that this fits with the associated relocation */
break;
case R_RISCV_HI20:
jump_target = sym_base_addr + rel->r_addend; /* S + A */
modified_operand = UNALIGNED_GET(loc32);
imm8 = jump_target;
/* bit 12 of the immediate goes to I-type instruction and might
* change the sign of the number
*/
/* in order to avoid that, we add 1 to the upper immediate if bit 12 is one*/
/* see RISC-V la pseudo instruction */
original_imm8 = imm8;
imm8 += imm8 & 0x800;
modified_operand = R_RISCV_CLEAR_UTYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_UTYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
reloc_type);
case R_RISCV_LO12_I:
modified_operand = UNALIGNED_GET(loc32);
jump_target = sym_base_addr + rel->r_addend; /* S + A */
imm8 = jump_target;
/* this is always used with R_RISCV_HI20 */
modified_operand = R_RISCV_CLEAR_ITYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_ITYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
reloc_type);
case R_RISCV_LO12_S:
modified_operand = UNALIGNED_GET(loc32);
imm8 = sym_base_addr + rel->r_addend; /* S + A */
/*
* S-type is used for stores/loads etc.
* size check is done at compile time, as it depends on the size of
* the structure we are trying to load/store
*/
modified_operand = R_RISCV_CLEAR_STYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_STYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
break;
/* for add/sub/set, compiler needs to ensure that the ELF sections are close enough */
case R_RISCV_ADD8:
tmp8 = UNALIGNED_GET(loc8);
tmp8 += sym_base_addr + rel->r_addend; /* V + S + A */
UNALIGNED_PUT(tmp8, loc8);
break;
case R_RISCV_ADD16:
tmp16 = UNALIGNED_GET(loc16);
tmp16 += sym_base_addr + rel->r_addend; /* V + S + A */
UNALIGNED_PUT(tmp16, loc16);
break;
case R_RISCV_ADD32:
tmp32 = UNALIGNED_GET(loc32);
tmp32 += sym_base_addr + rel->r_addend; /* V + S + A */
UNALIGNED_PUT(tmp32, loc32);
break;
case R_RISCV_ADD64:
tmp64 = UNALIGNED_GET(loc64);
tmp64 += sym_base_addr + rel->r_addend; /* V + S + A */
UNALIGNED_PUT(tmp64, loc64);
break;
case R_RISCV_SUB8:
tmp8 = UNALIGNED_GET(loc8);
tmp8 -= sym_base_addr + rel->r_addend; /* V - S - A */
UNALIGNED_PUT(tmp8, loc8);
break;
case R_RISCV_SUB16:
tmp16 = UNALIGNED_GET(loc16);
tmp16 -= sym_base_addr + rel->r_addend; /* V - S - A */
UNALIGNED_PUT(tmp16, loc16);
break;
case R_RISCV_SUB32:
tmp32 = UNALIGNED_GET(loc32);
tmp32 -= sym_base_addr + rel->r_addend; /* V - S - A */
UNALIGNED_PUT(tmp32, loc32);
break;
case R_RISCV_SUB64:
tmp64 = UNALIGNED_GET(loc64);
tmp64 -= sym_base_addr + rel->r_addend; /* V - S - A */
UNALIGNED_PUT(tmp64, loc64);
break;
case R_RISCV_SUB6:
tmp8 = UNALIGNED_GET(loc8) & (0x1F);
UNALIGNED_PUT(tmp8, loc8);
tmp8 = tmp8 - sym_base_addr - rel->r_addend; /* V - S - A */
tmp8 = tmp8 & (0x1F);
tmp8 = tmp8 | UNALIGNED_GET(loc8);
UNALIGNED_PUT(tmp8, loc8);
break;
case R_RISCV_SET6:
tmp8 = UNALIGNED_GET(loc8) & (0x1F);
UNALIGNED_PUT(tmp8, loc8);
tmp8 = sym_base_addr + rel->r_addend; /* S + A */
tmp8 = tmp8 | UNALIGNED_GET(loc8);
UNALIGNED_PUT(tmp8, loc8);
break;
case R_RISCV_SET8:
tmp8 = sym_base_addr + rel->r_addend; /* S + A */
UNALIGNED_PUT(tmp8, loc8);
break;
case R_RISCV_SET16:
tmp16 = sym_base_addr + rel->r_addend; /* S + A */
UNALIGNED_PUT(tmp16, loc16);
break;
case R_RISCV_SET32:
tmp32 = sym_base_addr + rel->r_addend; /* S + A */
UNALIGNED_PUT(tmp32, loc32);
break;
case R_RISCV_32_PCREL:
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
tmp32 = jump_target;
UNALIGNED_PUT(tmp32, loc32);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
reloc_type);
case R_RISCV_PLT32:
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
tmp32 = jump_target;
UNALIGNED_PUT(tmp32, loc32);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
reloc_type);
case R_RISCV_RVC_BRANCH:
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
modified_compressed_operand = UNALIGNED_GET(loc16);
compressed_imm8 = jump_target;
modified_compressed_operand =
R_RISCV_CLEAR_CBTYPE_IMM8(modified_compressed_operand);
modified_compressed_operand =
R_RISCV_SET_CBTYPE_IMM8(modified_compressed_operand, compressed_imm8);
UNALIGNED_PUT(modified_compressed_operand, loc16);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_CB_TYPE,
reloc_type);
case R_RISCV_RVC_JUMP:
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
modified_compressed_operand = UNALIGNED_GET(loc16);
compressed_imm8 = jump_target;
modified_compressed_operand =
R_RISCV_CLEAR_CJTYPE_IMM8(modified_compressed_operand);
modified_compressed_operand =
R_RISCV_SET_CJTYPE_IMM8(modified_compressed_operand, compressed_imm8);
UNALIGNED_PUT(modified_compressed_operand, loc16);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_CJ_TYPE,
reloc_type);
case R_RISCV_ALIGN:
/* we are supposed to move the symbol such that it is aligned to the next power of
* two >= addend
*/
/* this involves moving the symbol */
while (target_alignment < rel->r_addend) {
target_alignment *= 2;
}
LOG_ERR("Symbol %s with location %p requires alignment to %" PRIu64 " bytes!",
sym_name, (void *)loc, (uint64_t)target_alignment);
LOG_ERR("Alignment relocation is currently not supported!");
return -ENOEXEC;
/* ignored, this is primarily intended for removing instructions during link-time
* optimization
*/
case R_RISCV_RELAX:
break;
default:
LOG_ERR("Unsupported relocation type: %" PRIu64 " for symbol: %s",
(uint64_t)reloc_type, sym_name);
return -ENOEXEC;
}
return 0;
}