zephyr/drivers/i2c/i2c_max32.c
Yuval Peress 8974c248cf rtio: Add default i2c submit handler
Use the RTIO work queue to fake the i2c submit calls for drivers which
haven't yet implemented the API. Applications can change the size of
the work queue pool depending on how much traffic they have on the buses.

Signed-off-by: Yuval Peress <peress@google.com>
2024-09-04 21:28:26 +02:00

954 lines
28 KiB
C

/*
* Copyright (c) 2024 Analog Devices, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT adi_max32_i2c
#include <errno.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/adi_max32_clock_control.h>
#include <zephyr/irq.h>
#if defined(CONFIG_I2C_MAX32_DMA)
#include <zephyr/drivers/dma.h>
#endif /* CONFIG_I2C_MAX32_DMA */
#include <wrap_max32_i2c.h>
#define ADI_MAX32_I2C_INT_FL0_MASK 0x00FFFFFF
#define ADI_MAX32_I2C_INT_FL1_MASK 0x7
#define ADI_MAX32_I2C_STATUS_MASTER_BUSY BIT(5)
#define I2C_RECOVER_MAX_RETRIES 3
#ifdef CONFIG_I2C_MAX32_DMA
struct max32_i2c_dma_config {
const struct device *dev;
const uint32_t channel;
const uint32_t slot;
};
#endif /* CONFIG_I2C_MAX32_DMA */
/* Driver config */
struct max32_i2c_config {
mxc_i2c_regs_t *regs;
const struct pinctrl_dev_config *pctrl;
const struct device *clock;
struct max32_perclk perclk;
uint32_t bitrate;
#if defined(CONFIG_I2C_TARGET) || defined(CONFIG_I2C_MAX32_INTERRUPT)
uint8_t irqn;
void (*irq_config_func)(const struct device *dev);
#endif
#ifdef CONFIG_I2C_MAX32_DMA
struct max32_i2c_dma_config tx_dma;
struct max32_i2c_dma_config rx_dma;
#endif /* CONFIG_I2C_MAX32_DMA */
};
struct max32_i2c_data {
mxc_i2c_req_t req;
const struct device *dev;
struct k_sem lock;
uint8_t target_mode;
uint8_t flags;
#ifdef CONFIG_I2C_TARGET
struct i2c_target_config *target_cfg;
bool first_write;
#endif /* CONFIG_I2C_TARGET */
uint32_t readb;
uint32_t written;
#if defined(CONFIG_I2C_MAX32_INTERRUPT) || defined(CONFIG_I2C_MAX32_DMA)
struct k_sem xfer;
int err;
#endif
};
static int api_configure(const struct device *dev, uint32_t dev_cfg)
{
int ret = 0;
const struct max32_i2c_config *const cfg = dev->config;
mxc_i2c_regs_t *i2c = cfg->regs;
switch (I2C_SPEED_GET(dev_cfg)) {
case I2C_SPEED_STANDARD: /** I2C Standard Speed: 100 kHz */
ret = MXC_I2C_SetFrequency(i2c, MXC_I2C_STD_MODE);
break;
case I2C_SPEED_FAST: /** I2C Fast Speed: 400 kHz */
ret = MXC_I2C_SetFrequency(i2c, MXC_I2C_FAST_SPEED);
break;
#if defined(MXC_I2C_FASTPLUS_SPEED)
case I2C_SPEED_FAST_PLUS: /** I2C Fast Plus Speed: 1 MHz */
ret = MXC_I2C_SetFrequency(i2c, MXC_I2C_FASTPLUS_SPEED);
break;
#endif
#if defined(MXC_I2C_HIGH_SPEED)
case I2C_SPEED_HIGH: /** I2C High Speed: 3.4 MHz */
ret = MXC_I2C_SetFrequency(i2c, MXC_I2C_HIGH_SPEED);
break;
#endif
default:
/* Speed not supported */
return -ENOTSUP;
}
return ret;
}
#ifdef CONFIG_I2C_TARGET
static int api_target_register(const struct device *dev, struct i2c_target_config *cfg)
{
const struct max32_i2c_config *config = dev->config;
struct max32_i2c_data *data = dev->data;
mxc_i2c_regs_t *i2c = config->regs;
int ret;
data->target_cfg = cfg;
ret = MXC_I2C_Init(i2c, 0, cfg->address);
if (ret == E_NO_ERROR) {
data->target_mode = 1;
irq_enable(config->irqn);
MXC_I2C_SlaveTransactionAsync(i2c, NULL);
}
return ret == E_NO_ERROR ? 0 : E_FAIL;
}
static int api_target_unregister(const struct device *dev, struct i2c_target_config *cfg)
{
const struct max32_i2c_config *config = dev->config;
struct max32_i2c_data *data = dev->data;
mxc_i2c_regs_t *i2c = config->regs;
data->target_cfg = NULL;
data->target_mode = 0;
#ifndef CONFIG_I2C_MAX32_INTERRUPT
irq_disable(config->irqn);
#endif
return MXC_I2C_Init(i2c, 1, 0);
}
static int i2c_max32_target_callback(const struct device *dev, mxc_i2c_regs_t *i2c,
mxc_i2c_slave_event_t event)
{
struct max32_i2c_data *data = dev->data;
const struct i2c_target_callbacks *target_cb = data->target_cfg->callbacks;
static uint8_t rxval, txval, rxcnt;
switch (event) {
case MXC_I2C_EVT_MASTER_WR:
if (data->first_write && target_cb->write_requested) {
target_cb->write_requested(data->target_cfg);
data->first_write = false;
}
break;
case MXC_I2C_EVT_MASTER_RD:
break;
case MXC_I2C_EVT_RX_THRESH:
case MXC_I2C_EVT_OVERFLOW:
rxcnt = MXC_I2C_GetRXFIFOAvailable(i2c);
if (target_cb->write_received) {
while (rxcnt--) {
MXC_I2C_ReadRXFIFO(i2c, &rxval, 1);
target_cb->write_received(data->target_cfg, rxval);
}
} else {
MXC_I2C_ClearRXFIFO(i2c);
}
break;
case MXC_I2C_EVT_TX_THRESH:
case MXC_I2C_EVT_UNDERFLOW:
if (target_cb->read_requested) {
target_cb->read_requested(data->target_cfg, &txval);
MXC_I2C_WriteTXFIFO(i2c, &txval, 1);
}
if (target_cb->read_processed) {
target_cb->read_processed(data->target_cfg, &txval);
}
break;
case MXC_I2C_EVT_TRANS_COMP:
if (target_cb->stop) {
target_cb->stop(data->target_cfg);
}
data->first_write = true;
break;
}
return 0;
}
#endif /* CONFIG_I2C_TARGET */
static int api_recover_bus(const struct device *dev)
{
int ret;
const struct max32_i2c_config *const cfg = dev->config;
mxc_i2c_regs_t *i2c = cfg->regs;
ret = MXC_I2C_Recover(i2c, I2C_RECOVER_MAX_RETRIES);
return ret;
}
#ifndef CONFIG_I2C_MAX32_INTERRUPT
static int i2c_max32_transfer_sync(mxc_i2c_regs_t *i2c, struct max32_i2c_data *data)
{
uint32_t int_fl0, int_fl1;
uint32_t readb = 0;
mxc_i2c_req_t *req = &data->req;
/* Wait for acknowledge */
if (data->flags & (I2C_MSG_RESTART | I2C_MSG_READ)) {
do {
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
} while (!(int_fl0 & ADI_MAX32_I2C_INT_FL0_ADDR_ACK) &&
!(int_fl0 & ADI_MAX32_I2C_INT_FL0_ERR));
}
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ERR) {
return -EIO;
}
while (req->tx_len > data->written) {
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_TX_THD) {
data->written += MXC_I2C_WriteTXFIFO(i2c, &req->tx_buf[data->written],
req->tx_len - data->written);
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_TX_THD, 0);
}
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ERR) {
return -EIO;
}
}
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_DONE, 0);
Wrap_MXC_I2C_SetRxCount(i2c, req->rx_len);
while (req->rx_len > readb) {
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
if (int_fl0 & (ADI_MAX32_I2C_INT_FL0_RX_THD | ADI_MAX32_I2C_INT_FL0_DONE)) {
readb += MXC_I2C_ReadRXFIFO(i2c, &req->rx_buf[readb], req->rx_len - readb);
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_RX_THD, 0);
}
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ERR) {
return -EIO;
}
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
if ((int_fl0 & ADI_MAX32_I2C_INT_FL0_DONE) && (req->rx_len > readb) &&
MXC_I2C_GetRXFIFOAvailable(i2c) == 0) {
Wrap_MXC_I2C_SetRxCount(i2c, req->rx_len - readb);
Wrap_MXC_I2C_Restart(i2c);
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_DONE, 0);
i2c->fifo = (req->addr << 1) | 0x1;
}
}
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ERR) {
return -EIO;
}
if (data->flags & I2C_MSG_STOP) {
MXC_I2C_Stop(i2c);
do {
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
} while (!(int_fl0 & ADI_MAX32_I2C_INT_FL0_STOP));
}
if (req->rx_len) {
do {
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
} while (!(int_fl0 & ADI_MAX32_I2C_INT_FL0_DONE));
} else {
while (Wrap_MXC_I2C_GetTxFIFOLevel(i2c) > 0) {
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
}
}
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_MASK, ADI_MAX32_I2C_INT_FL1_MASK);
return 0;
}
#endif /* CONFIG_I2C_MAX32_INTERRUPT */
#if defined(CONFIG_I2C_MAX32_DMA)
static void i2c_max32_dma_callback(const struct device *dev, void *arg, uint32_t channel,
int status)
{
struct max32_i2c_data *data = arg;
const struct device *i2c_dev = data->dev;
const struct max32_i2c_config *const cfg = i2c_dev->config;
if (status < 0) {
data->err = -EIO;
} else {
if (data->req.restart) {
Wrap_MXC_I2C_Restart(cfg->regs);
} else {
Wrap_MXC_I2C_Stop(cfg->regs);
}
}
}
static int i2c_max32_tx_dma_load(const struct device *dev, struct i2c_msg *msg)
{
int ret;
const struct max32_i2c_config *config = dev->config;
struct max32_i2c_data *data = dev->data;
struct dma_config dma_cfg = {0};
struct dma_block_config dma_blk = {0};
dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
dma_cfg.dma_callback = i2c_max32_dma_callback;
dma_cfg.user_data = (void *)data;
dma_cfg.dma_slot = config->tx_dma.slot;
dma_cfg.block_count = 1;
dma_cfg.source_data_size = 1U;
dma_cfg.source_burst_length = 1U;
dma_cfg.dest_data_size = 1U;
dma_cfg.head_block = &dma_blk;
dma_blk.block_size = msg->len;
dma_blk.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
dma_blk.source_address = (uint32_t)msg->buf;
ret = dma_config(config->tx_dma.dev, config->tx_dma.channel, &dma_cfg);
if (ret < 0) {
return ret;
}
return dma_start(config->tx_dma.dev, config->tx_dma.channel);
}
static int i2c_max32_rx_dma_load(const struct device *dev, struct i2c_msg *msg)
{
int ret;
const struct max32_i2c_config *config = dev->config;
struct max32_i2c_data *data = dev->data;
struct dma_config dma_cfg = {0};
struct dma_block_config dma_blk = {0};
dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY;
dma_cfg.dma_callback = i2c_max32_dma_callback;
dma_cfg.user_data = (void *)data;
dma_cfg.dma_slot = config->rx_dma.slot;
dma_cfg.block_count = 1;
dma_cfg.source_data_size = 1U;
dma_cfg.source_burst_length = 1U;
dma_cfg.dest_data_size = 1U;
dma_cfg.head_block = &dma_blk;
dma_blk.block_size = msg->len;
dma_blk.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
dma_blk.dest_address = (uint32_t)msg->buf;
ret = dma_config(config->rx_dma.dev, config->rx_dma.channel, &dma_cfg);
if (ret < 0) {
return ret;
}
return dma_start(config->rx_dma.dev, config->rx_dma.channel);
}
static int i2c_max32_transfer_dma(const struct device *dev, struct i2c_msg *msgs, uint8_t num_msgs,
uint16_t target_address)
{
int ret = 0;
const struct max32_i2c_config *const cfg = dev->config;
struct max32_i2c_data *data = dev->data;
mxc_i2c_regs_t *i2c = cfg->regs;
uint8_t target_rw;
unsigned int i = 0;
k_sem_take(&data->lock, K_FOREVER);
MXC_I2C_SetRXThreshold(i2c, 1);
MXC_I2C_SetTXThreshold(i2c, 2);
MXC_I2C_ClearTXFIFO(i2c);
MXC_I2C_ClearRXFIFO(i2c);
for (i = 0; i < num_msgs; i++) {
data->req.restart = !(msgs[i].flags & I2C_MSG_STOP);
if (msgs[i].flags & I2C_MSG_READ) {
target_rw = (target_address << 1) | 0x1;
MXC_I2C_WriteTXFIFO(i2c, &target_rw, 1);
Wrap_MXC_I2C_SetRxCount(i2c, msgs[i].len);
ret = i2c_max32_rx_dma_load(dev, &msgs[i]);
if (ret < 0) {
break;
}
MXC_I2C_EnableInt(
i2c, ADI_MAX32_I2C_INT_EN0_DONE | ADI_MAX32_I2C_INT_EN0_ERR, 0);
i2c->dma |= ADI_MAX32_I2C_DMA_RX_EN;
} else {
target_rw = (target_address << 1) & ~0x1;
MXC_I2C_WriteTXFIFO(i2c, &target_rw, 1);
ret = i2c_max32_tx_dma_load(dev, &msgs[i]);
if (ret < 0) {
break;
}
MXC_I2C_EnableInt(
i2c, ADI_MAX32_I2C_INT_EN0_DONE | ADI_MAX32_I2C_INT_EN0_ERR, 0);
i2c->dma |= ADI_MAX32_I2C_DMA_TX_EN;
}
data->err = 0;
Wrap_MXC_I2C_Start(i2c);
ret = k_sem_take(&data->xfer, K_FOREVER);
Wrap_MXC_I2C_SetIntEn(i2c, 0, 0);
i2c->dma &= ~(ADI_MAX32_I2C_DMA_TX_EN | ADI_MAX32_I2C_DMA_RX_EN);
if (data->err) {
ret = data->err;
}
if (ret) {
MXC_I2C_Stop(i2c);
dma_stop(cfg->tx_dma.dev, cfg->tx_dma.channel);
dma_stop(cfg->rx_dma.dev, cfg->rx_dma.channel);
}
}
k_sem_give(&data->lock);
return ret;
}
#endif /* CONFIG_I2C_MAX32_DMA */
#ifdef CONFIG_I2C_MAX32_INTERRUPT
static int i2c_max32_transfer(const struct device *dev, struct i2c_msg *msgs, uint8_t num_msgs,
uint16_t target_address)
{
int ret = 0;
const struct max32_i2c_config *const cfg = dev->config;
struct max32_i2c_data *data = dev->data;
mxc_i2c_regs_t *i2c = cfg->regs;
mxc_i2c_req_t *req = &data->req;
uint8_t target_rw;
unsigned int i = 0;
req->i2c = i2c;
req->addr = target_address;
k_sem_take(&data->lock, K_FOREVER);
MXC_I2C_ClearRXFIFO(i2c);
MXC_I2C_ClearTXFIFO(i2c);
MXC_I2C_SetRXThreshold(i2c, 1);
/* First message should always begin with a START condition */
msgs[0].flags |= I2C_MSG_RESTART;
for (i = 0; i < num_msgs; i++) {
if (msgs[i].flags & I2C_MSG_READ) {
req->rx_buf = (unsigned char *)msgs[i].buf;
req->rx_len = msgs[i].len;
req->tx_buf = NULL;
req->tx_len = 0;
target_rw = (target_address << 1) | 0x1;
} else {
req->tx_buf = (unsigned char *)msgs[i].buf;
req->tx_len = msgs[i].len;
req->rx_buf = NULL;
req->rx_len = 0;
target_rw = (target_address << 1) & ~0x1;
}
/*
* If previous message ends with a STOP condition, this message
* should begin with a START
*/
if (i > 0) {
if ((msgs[i - 1].flags & (I2C_MSG_STOP | I2C_MSG_READ))) {
msgs[i].flags |= I2C_MSG_RESTART;
}
}
data->flags = msgs[i].flags;
data->readb = 0;
data->written = 0;
data->err = 0;
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_MASK, ADI_MAX32_I2C_INT_FL1_MASK);
MXC_I2C_EnableInt(i2c, ADI_MAX32_I2C_INT_EN0_ERR, 0);
Wrap_MXC_I2C_SetRxCount(i2c, req->rx_len);
if ((data->flags & I2C_MSG_RESTART)) {
MXC_I2C_EnableInt(i2c, ADI_MAX32_I2C_INT_EN0_ADDR_ACK, 0);
MXC_I2C_Start(i2c);
Wrap_MXC_I2C_WaitForRestart(i2c);
MXC_I2C_WriteTXFIFO(i2c, &target_rw, 1);
} else {
if (req->tx_len) {
data->written = MXC_I2C_WriteTXFIFO(i2c, req->tx_buf, 1);
MXC_I2C_EnableInt(i2c, ADI_MAX32_I2C_INT_EN0_TX_THD, 0);
} else {
MXC_I2C_EnableInt(i2c, ADI_MAX32_I2C_INT_EN0_RX_THD, 0);
}
}
ret = k_sem_take(&data->xfer, K_FOREVER);
if (data->err) {
MXC_I2C_Stop(i2c);
ret = data->err;
} else {
if (data->flags & I2C_MSG_STOP) {
/* Wait for busy flag to be cleared */
while (i2c->status & ADI_MAX32_I2C_STATUS_MASTER_BUSY) {
}
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_MASK,
ADI_MAX32_I2C_INT_FL1_MASK);
}
}
if (ret) {
break;
}
}
k_sem_give(&data->lock);
return ret;
}
#else
static int i2c_max32_transfer(const struct device *dev, struct i2c_msg *msgs, uint8_t num_msgs,
uint16_t target_address)
{
int ret = 0;
const struct max32_i2c_config *const cfg = dev->config;
struct max32_i2c_data *data = dev->data;
mxc_i2c_regs_t *i2c = cfg->regs;
mxc_i2c_req_t *req = &data->req;
uint8_t target_rw;
unsigned int i = 0;
req->i2c = i2c;
req->addr = target_address;
k_sem_take(&data->lock, K_FOREVER);
MXC_I2C_ClearRXFIFO(i2c);
/* First message should always begin with a START condition */
msgs[0].flags |= I2C_MSG_RESTART;
for (i = 0; i < num_msgs; i++) {
if (msgs[i].flags & I2C_MSG_READ) {
req->rx_buf = (unsigned char *)msgs[i].buf;
req->rx_len = msgs[i].len;
req->tx_buf = NULL;
req->tx_len = 0;
target_rw = (target_address << 1) | 0x1;
} else {
req->tx_buf = (unsigned char *)msgs[i].buf;
req->tx_len = msgs[i].len;
req->rx_buf = NULL;
req->rx_len = 0;
target_rw = (target_address << 1) & ~0x1;
}
/*
* If previous message ends with a STOP condition, this message
* should begin with a START
*/
if (i > 0) {
if ((msgs[i - 1].flags & (I2C_MSG_STOP | I2C_MSG_READ))) {
msgs[i].flags |= I2C_MSG_RESTART;
}
}
data->flags = msgs[i].flags;
data->readb = 0;
data->written = 0;
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_MASK, ADI_MAX32_I2C_INT_FL1_MASK);
Wrap_MXC_I2C_SetIntEn(i2c, 0, 0);
if (data->flags & I2C_MSG_RESTART) {
MXC_I2C_Start(i2c);
Wrap_MXC_I2C_WaitForRestart(i2c);
MXC_I2C_WriteTXFIFO(i2c, &target_rw, 1);
}
ret = i2c_max32_transfer_sync(i2c, data);
if (ret) {
MXC_I2C_Stop(i2c);
break;
}
}
k_sem_give(&data->lock);
return ret;
}
#endif /* CONFIG_I2C_MAX32_INTERRUPT */
static int api_transfer(const struct device *dev, struct i2c_msg *msgs, uint8_t num_msgs,
uint16_t target_address)
{
#if CONFIG_I2C_MAX32_DMA
const struct max32_i2c_config *cfg = dev->config;
if ((cfg->tx_dma.channel != 0xFF) && (cfg->rx_dma.channel != 0xFF)) {
return i2c_max32_transfer_dma(dev, msgs, num_msgs, target_address);
}
#endif
return i2c_max32_transfer(dev, msgs, num_msgs, target_address);
}
#ifdef CONFIG_I2C_TARGET
static void i2c_max32_isr_target(const struct device *dev, mxc_i2c_regs_t *i2c)
{
uint32_t ctrl;
uint32_t int_fl0;
uint32_t int_fl1;
uint32_t int_en0;
uint32_t int_en1;
ctrl = i2c->ctrl;
Wrap_MXC_I2C_GetIntEn(i2c, &int_en0, &int_en1);
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_MASK, ADI_MAX32_I2C_INT_FL1_MASK);
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ERR) {
/* Error occurred, notify callback function and end transaction */
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_TRANS_COMP);
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_MASK, ADI_MAX32_I2C_INT_FL1_MASK);
MXC_I2C_ClearTXFIFO(i2c);
MXC_I2C_ClearRXFIFO(i2c);
}
/* Check whether data is available if we received an interrupt occurred while receiving */
if (int_en0 & ADI_MAX32_I2C_INT_EN0_RX_THD || int_en1 & ADI_MAX32_I2C_INT_EN1_RX_OVERFLOW) {
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_RX_THD) {
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_RX_THRESH);
}
if (int_fl1 & ADI_MAX32_I2C_INT_FL1_RX_OVERFLOW) {
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_OVERFLOW);
}
}
/* Check whether TX FIFO needs to be refilled if interrupt ocurred while transmitting */
if (int_en0 & (ADI_MAX32_I2C_INT_EN0_TX_THD | ADI_MAX32_I2C_INT_EN0_TX_LOCK_OUT) ||
int_en1 & ADI_MAX32_I2C_INT_EN1_TX_UNDERFLOW) {
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_TX_THD) {
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_TX_THRESH);
}
if (int_fl1 & ADI_MAX32_I2C_INT_EN1_TX_UNDERFLOW) {
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_UNDERFLOW);
}
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_TX_LOCK_OUT) {
int_en0 = ADI_MAX32_I2C_INT_EN0_ADDR_MATCH;
int_en1 = 0;
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_TRANS_COMP);
}
}
/* Check if transaction completed or restart occurred */
if (int_en0 & ADI_MAX32_I2C_INT_EN0_DONE) {
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_STOP) {
/* Stop/NACK condition occurred, transaction complete */
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_TRANS_COMP);
int_en0 = ADI_MAX32_I2C_INT_EN0_ADDR_MATCH;
} else if (int_fl0 & ADI_MAX32_I2C_INT_FL0_DONE) {
/* Restart detected, re-arm address match interrupt */
int_en0 = ADI_MAX32_I2C_INT_EN0_ADDR_MATCH;
}
int_en1 = 0;
}
/* Check for address match interrupt */
if (int_en0 & ADI_MAX32_I2C_INT_EN0_ADDR_MATCH) {
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ADDR_MATCH) {
/* Address match occurred, prepare for transaction */
if (i2c->ctrl & MXC_F_I2C_CTRL_READ) {
/* Read request received from the master */
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_MASTER_RD);
int_en0 = ADI_MAX32_I2C_INT_EN0_TX_THD |
ADI_MAX32_I2C_INT_EN0_TX_LOCK_OUT |
ADI_MAX32_I2C_INT_EN0_DONE | ADI_MAX32_I2C_INT_EN0_ERR;
int_en1 = ADI_MAX32_I2C_INT_EN1_TX_UNDERFLOW;
} else {
/* Write request received from the master */
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_MASTER_WR);
int_en0 = ADI_MAX32_I2C_INT_EN0_RX_THD |
ADI_MAX32_I2C_INT_EN0_DONE | ADI_MAX32_I2C_INT_EN0_ERR;
int_en1 = ADI_MAX32_I2C_INT_EN1_RX_OVERFLOW;
}
}
}
Wrap_MXC_I2C_SetIntEn(i2c, int_en0, int_en1);
}
#endif /* CONFIG_I2C_TARGET */
#ifdef CONFIG_I2C_MAX32_INTERRUPT
static void i2c_max32_isr_controller(const struct device *dev, mxc_i2c_regs_t *i2c)
{
struct max32_i2c_data *data = dev->data;
mxc_i2c_req_t *req = &data->req;
uint32_t written, readb;
uint32_t txfifolevel;
uint32_t int_fl0, int_fl1;
uint32_t int_en0, int_en1;
written = data->written;
readb = data->readb;
Wrap_MXC_I2C_GetIntEn(i2c, &int_en0, &int_en1);
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_MASK, ADI_MAX32_I2C_INT_FL1_MASK);
txfifolevel = Wrap_MXC_I2C_GetTxFIFOLevel(i2c);
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ERR) {
data->err = -EIO;
Wrap_MXC_I2C_SetIntEn(i2c, 0, 0);
k_sem_give(&data->xfer);
return;
}
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ADDR_ACK) {
MXC_I2C_DisableInt(i2c, ADI_MAX32_I2C_INT_EN0_ADDR_ACK, 0);
if (written < req->tx_len) {
MXC_I2C_EnableInt(i2c, ADI_MAX32_I2C_INT_EN0_TX_THD, 0);
} else if (readb < req->rx_len) {
MXC_I2C_EnableInt(
i2c, ADI_MAX32_I2C_INT_EN0_RX_THD | ADI_MAX32_I2C_INT_EN0_DONE, 0);
}
}
if (req->tx_len &&
(int_fl0 & (ADI_MAX32_I2C_INT_FL0_TX_THD | ADI_MAX32_I2C_INT_FL0_DONE))) {
if (written < req->tx_len) {
written += MXC_I2C_WriteTXFIFO(i2c, &req->tx_buf[written],
req->tx_len - written);
} else {
if (!(int_en0 & ADI_MAX32_I2C_INT_EN0_DONE)) {
/* We are done, stop sending more data */
MXC_I2C_DisableInt(i2c, ADI_MAX32_I2C_INT_EN0_TX_THD, 0);
if (data->flags & I2C_MSG_STOP) {
MXC_I2C_EnableInt(i2c, ADI_MAX32_I2C_INT_EN0_DONE, 0);
/* Done flag is not set if stop/restart is not set */
Wrap_MXC_I2C_Stop(i2c);
} else {
k_sem_give(&data->xfer);
}
}
if ((int_fl0 & ADI_MAX32_I2C_INT_FL0_DONE)) {
MXC_I2C_DisableInt(i2c, ADI_MAX32_I2C_INT_EN0_DONE, 0);
k_sem_give(&data->xfer);
}
}
} else if ((int_fl0 & (ADI_MAX32_I2C_INT_FL0_RX_THD | ADI_MAX32_I2C_INT_FL0_DONE))) {
readb += MXC_I2C_ReadRXFIFO(i2c, &req->rx_buf[readb], req->rx_len - readb);
if (readb == req->rx_len) {
MXC_I2C_DisableInt(i2c, ADI_MAX32_I2C_INT_EN0_RX_THD, 0);
if (data->flags & I2C_MSG_STOP) {
MXC_I2C_DisableInt(i2c, ADI_MAX32_I2C_INT_EN0_DONE, 0);
Wrap_MXC_I2C_Stop(i2c);
k_sem_give(&data->xfer);
} else {
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_DONE) {
MXC_I2C_DisableInt(i2c, ADI_MAX32_I2C_INT_EN0_DONE, 0);
k_sem_give(&data->xfer);
}
}
} else if ((int_en0 & ADI_MAX32_I2C_INT_EN0_DONE) &&
(int_fl0 & ADI_MAX32_I2C_INT_FL0_DONE)) {
MXC_I2C_DisableInt(
i2c, (ADI_MAX32_I2C_INT_EN0_RX_THD | ADI_MAX32_I2C_INT_EN0_DONE),
0);
Wrap_MXC_I2C_SetRxCount(i2c, req->rx_len - readb);
MXC_I2C_EnableInt(i2c, ADI_MAX32_I2C_INT_EN0_ADDR_ACK, 0);
i2c->fifo = (req->addr << 1) | 0x1;
Wrap_MXC_I2C_Restart(i2c);
}
}
data->written = written;
data->readb = readb;
}
#endif /* CONFIG_I2C_MAX32_INTERRUPT */
#ifdef CONFIG_I2C_MAX32_DMA
static void i2c_max32_isr_controller_dma(const struct device *dev, mxc_i2c_regs_t *i2c)
{
struct max32_i2c_data *data = dev->data;
uint32_t int_fl0, int_fl1;
uint32_t int_en0, int_en1;
Wrap_MXC_I2C_GetIntEn(i2c, &int_en0, &int_en1);
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_MASK, ADI_MAX32_I2C_INT_FL1_MASK);
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ERR) {
data->err = -EIO;
Wrap_MXC_I2C_SetIntEn(i2c, 0, 0);
k_sem_give(&data->xfer);
} else {
if (!data->err && (int_en0 & ADI_MAX32_I2C_INT_EN0_DONE)) {
k_sem_give(&data->xfer);
}
}
}
#endif /* CONFIG_I2C_MAX32_DMA */
#if defined(CONFIG_I2C_TARGET) || defined(CONFIG_I2C_MAX32_INTERRUPT)
static void i2c_max32_isr(const struct device *dev)
{
const struct max32_i2c_config *cfg = dev->config;
struct max32_i2c_data *data = dev->data;
mxc_i2c_regs_t *i2c = cfg->regs;
#ifdef CONFIG_I2C_MAX32_INTERRUPT
if (data->target_mode == 0) {
#ifdef CONFIG_I2C_MAX32_DMA
if ((cfg->tx_dma.channel != 0xFF) && (cfg->rx_dma.channel != 0xFF)) {
i2c_max32_isr_controller_dma(dev, i2c);
return;
}
#endif
i2c_max32_isr_controller(dev, i2c);
return;
}
#endif /* CONFIG_I2C_MAX32_INTERRUPT */
#ifdef CONFIG_I2C_TARGET
if (data->target_mode == 1) {
i2c_max32_isr_target(dev, i2c);
}
#endif
}
#endif /* CONFIG_I2C_TARGET || CONFIG_I2C_MAX32_INTERRUPT */
static const struct i2c_driver_api api = {
.configure = api_configure,
.transfer = api_transfer,
#ifdef CONFIG_I2C_TARGET
.target_register = api_target_register,
.target_unregister = api_target_unregister,
#endif
#ifdef CONFIG_I2C_RTIO
.iodev_submit = i2c_iodev_submit_fallback,
#endif
.recover_bus = api_recover_bus,
};
static int i2c_max32_init(const struct device *dev)
{
const struct max32_i2c_config *const cfg = dev->config;
struct max32_i2c_data *data = dev->data;
mxc_i2c_regs_t *i2c = cfg->regs;
int ret = 0;
if (!device_is_ready(cfg->clock)) {
return -ENODEV;
}
MXC_I2C_Shutdown(i2c); /* Clear everything out */
ret = clock_control_on(cfg->clock, (clock_control_subsys_t)&cfg->perclk);
if (ret) {
return ret;
}
ret = pinctrl_apply_state(cfg->pctrl, PINCTRL_STATE_DEFAULT);
if (ret) {
return ret;
}
ret = MXC_I2C_Init(i2c, 1, 0); /* Configure as master */
if (ret) {
return ret;
}
MXC_I2C_SetFrequency(i2c, cfg->bitrate);
k_sem_init(&data->lock, 1, 1);
#if defined(CONFIG_I2C_TARGET) || defined(CONFIG_I2C_MAX32_INTERRUPT)
cfg->irq_config_func(dev);
#endif
#ifdef CONFIG_I2C_MAX32_INTERRUPT
irq_enable(cfg->irqn);
k_sem_init(&data->xfer, 0, 1);
#endif
#if defined(CONFIG_I2C_TARGET)
data->first_write = true;
data->target_mode = 0;
#endif
data->dev = dev;
return ret;
}
#if defined(CONFIG_I2C_TARGET) || defined(CONFIG_I2C_MAX32_INTERRUPT)
#define I2C_MAX32_CONFIG_IRQ_FUNC(n) \
.irq_config_func = i2c_max32_irq_config_func_##n, .irqn = DT_INST_IRQN(n),
#define I2C_MAX32_IRQ_CONFIG_FUNC(n) \
static void i2c_max32_irq_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), i2c_max32_isr, \
DEVICE_DT_INST_GET(n), 0); \
}
#else
#define I2C_MAX32_CONFIG_IRQ_FUNC(n)
#define I2C_MAX32_IRQ_CONFIG_FUNC(n)
#endif
#if CONFIG_I2C_MAX32_DMA
#define MAX32_DT_INST_DMA_CTLR(n, name) \
COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), \
(DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, name))), (NULL))
#define MAX32_DT_INST_DMA_CELL(n, name, cell) \
COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), (DT_INST_DMAS_CELL_BY_NAME(n, name, cell)), \
(0xff))
#define MAX32_I2C_TX_DMA_INIT(n) \
.tx_dma.dev = MAX32_DT_INST_DMA_CTLR(n, tx), \
.tx_dma.channel = MAX32_DT_INST_DMA_CELL(n, tx, channel), \
.tx_dma.slot = MAX32_DT_INST_DMA_CELL(n, tx, slot),
#define MAX32_I2C_RX_DMA_INIT(n) \
.rx_dma.dev = MAX32_DT_INST_DMA_CTLR(n, rx), \
.rx_dma.channel = MAX32_DT_INST_DMA_CELL(n, rx, channel), \
.rx_dma.slot = MAX32_DT_INST_DMA_CELL(n, rx, slot),
#else
#define MAX32_I2C_TX_DMA_INIT(n)
#define MAX32_I2C_RX_DMA_INIT(n)
#endif
#define DEFINE_I2C_MAX32(_num) \
PINCTRL_DT_INST_DEFINE(_num); \
I2C_MAX32_IRQ_CONFIG_FUNC(_num) \
static const struct max32_i2c_config max32_i2c_dev_cfg_##_num = { \
.regs = (mxc_i2c_regs_t *)DT_INST_REG_ADDR(_num), \
.pctrl = PINCTRL_DT_INST_DEV_CONFIG_GET(_num), \
.clock = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(_num)), \
.perclk.bus = DT_INST_CLOCKS_CELL(_num, offset), \
.perclk.bit = DT_INST_CLOCKS_CELL(_num, bit), \
.bitrate = DT_INST_PROP(_num, clock_frequency), \
I2C_MAX32_CONFIG_IRQ_FUNC(_num) MAX32_I2C_TX_DMA_INIT(_num) \
MAX32_I2C_RX_DMA_INIT(_num)}; \
static struct max32_i2c_data max32_i2c_data_##_num; \
I2C_DEVICE_DT_INST_DEFINE(_num, i2c_max32_init, NULL, &max32_i2c_data_##_num, \
&max32_i2c_dev_cfg_##_num, PRE_KERNEL_2, \
CONFIG_I2C_INIT_PRIORITY, &api);
DT_INST_FOREACH_STATUS_OKAY(DEFINE_I2C_MAX32)