zephyr/drivers/flash/soc_flash_mcux.c
Declan Snyder efdd8580ca soc: nxp: Flatten MCX SOCs
Turn MCX series into families.

Reasoning:
 1. The MCX SOCs are quite different from each other and having them all
    under one family in the HWMv2 hierarchy is fruitless because there
    are so many differences that it is confusing to try to introduce
    family-level code and configs since they would each only apply to a
    subset of the series. There is almost nothing that can be shared
    between all of them. Which is why there are comments in the MCX
    family files saying not to put anything in them. This is a technical
    waste.
 2. Therefore, turning all of them into families is almost 0 effort and
    makes sense. It will allow these different types of MCX to be
    further subdivided into series in the future as the MCX portfolio
    expands and such division will be necessary as new SOCs within each
    letter family are released.

Signed-off-by: Declan Snyder <declan.snyder@nxp.com>
2025-07-19 13:25:29 -04:00

382 lines
9.8 KiB
C

/*
* Copyright (c) 2016 Linaro Limited
* Copyright 2024 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <string.h>
#include <zephyr/drivers/flash.h>
#include <errno.h>
#include <zephyr/init.h>
#include <soc.h>
#include <zephyr/sys/barrier.h>
#include "flash_priv.h"
#include "fsl_common.h"
#define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(flash_mcux);
#if DT_NODE_HAS_STATUS_OKAY(DT_INST(0, nxp_kinetis_ftfa))
#define DT_DRV_COMPAT nxp_kinetis_ftfa
#elif DT_NODE_HAS_STATUS_OKAY(DT_INST(0, nxp_kinetis_ftfe))
#define DT_DRV_COMPAT nxp_kinetis_ftfe
#elif DT_NODE_HAS_STATUS_OKAY(DT_INST(0, nxp_kinetis_ftfl))
#define DT_DRV_COMPAT nxp_kinetis_ftfl
#elif DT_NODE_HAS_STATUS_OKAY(DT_INST(0, nxp_iap_fmc55))
#define DT_DRV_COMPAT nxp_iap_fmc55
#define SOC_HAS_IAP 1
#elif DT_NODE_HAS_STATUS_OKAY(DT_INST(0, nxp_iap_fmc553))
#define DT_DRV_COMPAT nxp_iap_fmc553
#define SOC_HAS_IAP 1
#elif DT_NODE_HAS_STATUS_OKAY(DT_INST(0, nxp_msf1))
#define DT_DRV_COMPAT nxp_msf1
#define SOC_HAS_MSF1 1
#else
#error No matching compatible for soc_flash_mcux.c
#endif
#if defined(SOC_HAS_IAP) && !defined(CONFIG_SOC_LPC55S36)
#include "fsl_iap.h"
#elif defined(CONFIG_SOC_FAMILY_MCXA)
#include "fsl_romapi.h"
#define FLASH_Erase FLASH_EraseSector
#define FLASH_Program FLASH_ProgramPhrase
#elif defined(CONFIG_MCUX_FLASH_K4_API)
#include "fsl_k4_flash.h"
#else
#include "fsl_flash.h"
#endif /* SOC_HAS_IAP && !CONFIG_SOC_LPC55S36*/
#define SOC_NV_FLASH_NODE DT_INST(0, soc_nv_flash)
#if defined(CONFIG_CHECK_BEFORE_READING) && !defined(CONFIG_SOC_SERIES_LPC55XXX)
#define FMC_STATUS_FAIL FLASH_INT_CLR_ENABLE_FAIL_MASK
#define FMC_STATUS_ERR FLASH_INT_CLR_ENABLE_ERR_MASK
#define FMC_STATUS_DONE FLASH_INT_CLR_ENABLE_DONE_MASK
#define FMC_STATUS_ECC FLASH_INT_CLR_ENABLE_ECC_ERR_MASK
#define FMC_STATUS_FAILURES \
(FMC_STATUS_FAIL | FMC_STATUS_ERR | FMC_STATUS_ECC)
#define FMC_CMD_BLANK_CHECK 5
#define FMC_CMD_MARGIN_CHECK 6
/* Issue single command that uses an a start and stop address. */
static uint32_t get_cmd_status(uint32_t cmd, uint32_t addr, size_t len)
{
FLASH_Type *p_fmc = (FLASH_Type *)DT_INST_REG_ADDR(0);
uint32_t status;
/* issue low level command */
p_fmc->INT_CLR_STATUS = 0xF;
p_fmc->STARTA = (addr>>4) & 0x3FFFF;
p_fmc->STOPA = ((addr+len-1)>>4) & 0x3FFFF;
p_fmc->CMD = cmd;
barrier_dsync_fence_full();
barrier_isync_fence_full();
/* wait for command to be done */
while (!(p_fmc->INT_STATUS & FMC_STATUS_DONE))
;
/* get read status and then clear it */
status = p_fmc->INT_STATUS;
p_fmc->INT_CLR_STATUS = 0xF;
return status;
}
/* This function prevents erroneous reading. Some ECC enabled devices will
* crash when reading an erased area.
*/
static status_t is_area_readable(uint32_t addr, size_t len)
{
uint32_t key;
status_t status;
key = irq_lock();
/* If the area was erased, ECC errors are triggered on read. */
status = get_cmd_status(FMC_CMD_BLANK_CHECK, addr, len);
if (!(status & FMC_STATUS_FAIL)) {
LOG_DBG("read request on erased addr:0x%08x size:%d",
addr, len);
irq_unlock(key);
return -ENODATA;
}
irq_unlock(key);
return 0;
}
#endif /* CONFIG_CHECK_BEFORE_READING && ! CONFIG_SOC_SERIES_LPC55XXX */
#define SOC_FLASH_NEED_CLEAR_CACHES 1
#ifdef CONFIG_SOC_FAMILY_MCXW
static void clear_flash_caches(void)
{
volatile uint32_t *const smscm_ocmdr0 = (volatile uint32_t *)0x40015400;
/* this bit clears the flash cache */
*smscm_ocmdr0 |= BIT(8);
volatile uint32_t *mcm_cpcr2 = (volatile uint32_t *)0xe0080034;
/* this bit clears the code cache */
*mcm_cpcr2 |= BIT(0);
}
#elif CONFIG_SOC_FAMILY_MCXN
static void clear_flash_caches(void)
{
volatile uint32_t *const nvm_ctrl = (volatile uint32_t *)0x40000400;
/* this bit clears the flash cache */
*nvm_ctrl |= BIT(5);
volatile uint32_t *const lpcac_ctrl = (volatile uint32_t *)0x40000824;
/* this bit clears the code cache */
*lpcac_ctrl |= BIT(1);
}
#elif CONFIG_SOC_FAMILY_MCXA
static void clear_flash_caches(void)
{
SYSCON->LPCAC_CTRL |= SYSCON_LPCAC_CTRL_DIS_LPCAC(1U);
}
#else
#undef SOC_FLASH_NEED_CLEAR_CACHES
#define clear_flash_caches(...)
#endif
struct flash_priv {
flash_config_t config;
/*
* HACK: flash write protection is managed in software.
*/
struct k_sem write_lock;
uint32_t pflash_block_base;
};
static const struct flash_parameters flash_mcux_parameters = {
#if DT_NODE_HAS_PROP(SOC_NV_FLASH_NODE, write_block_size)
.write_block_size = DT_PROP(SOC_NV_FLASH_NODE, write_block_size),
#else
.write_block_size = FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE,
#endif
.erase_value = 0xff,
};
/*
* Interrupt vectors could be executed from flash hence the need for locking.
* The underlying MCUX driver takes care of copying the functions to SRAM.
*
* For more information, see the application note below on Read-While-Write
* http://cache.freescale.com/files/32bit/doc/app_note/AN4695.pdf
*
*/
static int flash_mcux_erase(const struct device *dev, off_t offset,
size_t len)
{
struct flash_priv *priv = dev->data;
uint32_t addr;
status_t rc;
unsigned int key;
if (k_sem_take(&priv->write_lock, K_FOREVER)) {
return -EACCES;
}
addr = offset + priv->pflash_block_base;
key = irq_lock();
rc = FLASH_Erase(&priv->config,
#if CONFIG_MCUX_FLASH_K4_API
(FMU_Type *) DT_INST_REG_ADDR(0),
#endif
addr, len, kFLASH_ApiEraseKey);
if (IS_ENABLED(SOC_FLASH_NEED_CLEAR_CACHES)) {
clear_flash_caches();
}
irq_unlock(key);
k_sem_give(&priv->write_lock);
return (rc == kStatus_Success) ? 0 : -EINVAL;
}
/*
* @brief Read a flash memory area.
*
* @param dev Device struct
* @param offset The address's offset
* @param data The buffer to store or read the value
* @param length The size of the buffer
* @return 0 on success,
* -EIO for erroneous area
*/
static int flash_mcux_read(const struct device *dev, off_t offset,
void *data, size_t len)
{
struct flash_priv *priv = dev->data;
uint32_t addr;
status_t rc = 0;
/*
* The MCUX supports different flash chips whose valid ranges are
* hidden below the API: until the API export these ranges, we can not
* do any generic validation
*/
addr = offset + priv->pflash_block_base;
#ifdef CONFIG_CHECK_BEFORE_READING
/*
* Ensure the area is readable, since a direct access may cause faults
* on erased or otherwise unreadable pages. Emulate erased pages,
* return other errors.
*/
#ifdef CONFIG_SOC_SERIES_LPC55XXX
/* On LPC55XXX, use a HAL function to safely copy from Flash. */
rc = FLASH_Read(&priv->config, addr, data, len);
switch (rc) {
case kStatus_FLASH_Success:
rc = 0;
break;
case kStatus_FLASH_EccError:
/* Check id the ECC issue is due to the Flash being erased
* ("addr" and "len" must be word-aligned for this call).
*/
rc = FLASH_VerifyErase(&priv->config,
ROUND_DOWN(addr, 4),
ROUND_DOWN(addr + len + 3, 4) - ROUND_DOWN(addr, 4));
if (rc == kStatus_FLASH_Success) {
rc = -ENODATA;
} else {
rc = -EIO;
}
break;
default:
rc = -EIO;
break;
}
#else /* CONFIG_SOC_SERIES_LPC55XXX */
/* On all other targets, check if the Flash area is readable.
* If so, copy data from it directly.
*/
rc = is_area_readable(addr, len);
if (!rc) {
memcpy(data, (void *) addr, len);
}
#endif /* CONFIG_SOC_SERIES_LPC55XXX */
if (rc == -ENODATA) {
/* Erased area, return dummy data as an erased page. */
memset(data, 0xFF, len);
rc = 0;
}
#else /* CONFIG_CHECK_BEFORE_READING */
/* No safety checks, directly copy the memory mapped data. */
memcpy(data, (void *) addr, len);
#endif /* CONFIG_CHECK_BEFORE_READING */
return rc;
}
static int flash_mcux_write(const struct device *dev, off_t offset,
const void *data, size_t len)
{
struct flash_priv *priv = dev->data;
uint32_t addr;
status_t rc;
unsigned int key;
if (k_sem_take(&priv->write_lock, K_FOREVER)) {
return -EACCES;
}
addr = offset + priv->pflash_block_base;
key = irq_lock();
rc = FLASH_Program(&priv->config,
#if CONFIG_MCUX_FLASH_K4_API
(FMU_Type *) DT_INST_REG_ADDR(0),
#endif
addr, (uint8_t *) data, len);
if (IS_ENABLED(SOC_FLASH_NEED_CLEAR_CACHES)) {
clear_flash_caches();
}
irq_unlock(key);
k_sem_give(&priv->write_lock);
return (rc == kStatus_Success) ? 0 : -EINVAL;
}
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
static const struct flash_pages_layout dev_layout = {
.pages_count = DT_REG_SIZE(SOC_NV_FLASH_NODE) /
DT_PROP(SOC_NV_FLASH_NODE, erase_block_size),
.pages_size = DT_PROP(SOC_NV_FLASH_NODE, erase_block_size),
};
static void flash_mcux_pages_layout(const struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
*layout = &dev_layout;
*layout_size = 1;
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
static const struct flash_parameters *
flash_mcux_get_parameters(const struct device *dev)
{
ARG_UNUSED(dev);
return &flash_mcux_parameters;
}
static struct flash_priv flash_data;
static DEVICE_API(flash, flash_mcux_api) = {
.erase = flash_mcux_erase,
.write = flash_mcux_write,
.read = flash_mcux_read,
.get_parameters = flash_mcux_get_parameters,
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
.page_layout = flash_mcux_pages_layout,
#endif
};
#if (defined(SOC_HAS_IAP) || defined(SOC_HAS_MSF1)) && !defined(CONFIG_MCUX_FLASH_K4_API)
#define FLASH_PROP_BLOCK_BASE kFLASH_PropertyPflashBlockBaseAddr
#else
#define FLASH_PROP_BLOCK_BASE kFLASH_PropertyPflash0BlockBaseAddr
#endif
static int flash_mcux_init(const struct device *dev)
{
struct flash_priv *priv = dev->data;
uint32_t pflash_block_base;
status_t rc;
k_sem_init(&priv->write_lock, 1, 1);
rc = FLASH_Init(&priv->config);
FLASH_GetProperty(&priv->config, FLASH_PROP_BLOCK_BASE, &pflash_block_base);
priv->pflash_block_base = (uint32_t) pflash_block_base;
return (rc == kStatus_Success) ? 0 : -EIO;
}
DEVICE_DT_INST_DEFINE(0, flash_mcux_init, NULL,
&flash_data, NULL, POST_KERNEL,
CONFIG_FLASH_INIT_PRIORITY, &flash_mcux_api);