According to the Zephyr Coding Guideline all switch statements
shall be well-formed. Add a default case with break and comment
to avoid static analysis tool to raise a violation that there is no
default case.
Also, I think, in all cases above no need to use "break",
because they already are using "return".
Found as a coding guideline violation (MISRA R16.1) by static
coding scanning tool.
Signed-off-by: Maksim Masalski <maksim.masalski@intel.com>
Add a dependency on MULTITHREADING for the
STACK_SENTINEL feature, so it may not get
enabled in single-thread Zephyr builds.
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
K_busy_wait is the only function from thread.c that is used when
CONFIG_MULTITHREADING=n. Moving to timeout since it fits better there
as it requires sys clock to be present.
Signed-off-by: Krzysztof Chruscinski <krzysztof.chruscinski@nordicsemi.no>
Both operands of an operator in which the usual arithmetic
conversions are performed shall have the same essential
type category.
Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
Tests of a value against zero should be made explicit, unless the
operand is effectively Boolean. This is based on MISRA rule 14.4.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Add a 'U' suffix to values when computing and comparing against
unsigned variables and other related fixes of the same MISRA rule (10.4)
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
This patch replaces ENOSYS into ENOTSUP to keep consistency with
the return value specification of k_float_enable().
Signed-off-by: Katsuhiro Suzuki <katsuhiro@katsuster.net>
This patch introduce new API to enable FPU of thread. This is pair of
existed k_float_disable() API. And also add empty arch_float_enable()
into each architectures that have arch_float_disable(). The arc and
riscv already implemented arch_float_enable() so I do not touch
these implementations.
Motivation: Current Zephyr implementation does not allow to use FPU
on main and other system threads like as work queue. Users need to
create an other thread with K_FP_REGS for floating point programs.
Users can use FPU more easily if they can enable FPU on running
threads.
Signed-off-by: Katsuhiro Suzuki <katsuhiro@katsuster.net>
Previously, a racing write to the provided string could result
in up to CONFIG_THREAD_MAX_NAME_LEN-2 bytes after the end
of user-accessible memory being leaked into the thread name.
For now, make a temporary copy. In an ideal world this could
copy directly from userspace into the thread name, but that
violates the current vrfy / impl split.
Signed-off-by: James Harris <james.harris@intel.com>
Add a newer, much smaller and simpler implementation of abort and
join. No need to involve the idle thread. No need for a special code
path for self-abort. Joining a thread and waiting for an aborting one
to terminate elsewhere share an implementation. All work in both
calls happens under a single locked path with no unexpected
synchronization points.
This fixes a bug with the current implementation where the action of
z_sched_single_abort() was nonatomic, releasing the lock internally at
a point where the thread to be aborted could self-abort and confuse
the state such that it failed to abort at all.
Note that the arm32 and native_posix architectures, which have their
own thread abort implementations, now see a much simplified
"z_thread_abort()" internal API.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
THIS COMMIT DELIBERATELY BREAKS BISECTABILITY FOR EASE OF REVIEW.
SKIP IF YOU LAND HERE.
Remove the existing implementatoin of k_thread_abort(),
k_thread_join(), and the attendant facilities in the thread subsystem
and idle thread that support them.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
This got missed, leaving garbage there for restarted threads to trip
on. Actually I see multiple uninitialized fields, which seems odd.
This code deserves some rework, thread initialization isn't a
performance path and we should probably be zeroing the struct out.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
The call to arch_mem_coherent() inside spinlock.h
when spinlock validation and memory coherence enabled
is causing build error as spinlock.h does not include
kernel_arch_func.h directly. However, simply including
that file does not work either as this creates
the chicken-or-egg in the chain of include files.
In order to make spin validation work with kernel
coherence enabled, a separate function is created
to break the circular dependencies of include files.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
The internal API to measure time until a delay expires does not modify
the referenced timeout. Make the functions that call it take pointers
to const objects, so that they can be used with pointer to
const-qualified containers.
Signed-off-by: Peter Bigot <peter.bigot@nordicsemi.no>
In order to release irq_offload semaphore outside kernel/thread.c, we
make it visible by modifying it non-static under ztest. This would be
needed such as when call irq_offload() to enter interrupt context and
a fatal error happened, then you have to release it in your fatal
handler, or the irq_offload will still be locked and no longer be
using again.
Signed-off-by: Enjia Mai <enjiax.mai@intel.com>
Most of kernel files where declaring os module without providing
log level. Because of that default log level was used instead of
CONFIG_KERNEL_LOG_LEVEL.
Signed-off-by: Krzysztof Chruscinski <krzysztof.chruscinski@nordicsemi.no>
This uses the timing functions to gather execution cycles of
threads. This provides greater details if arch/SoC/board
uses timer with higher resolution.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Since the tracing of thread being switched in/out has the same
instrumentation points, we can roll the tracing function calls
into the one for thread stats gathering functions.
This avoids duplicating code to call another function.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
This adds the bits to gather the first thread runtime statictic:
thread execution time. It provides a rough idea of how much time
a thread is spent in active execution. Currently it is not being
used, pending following commits where it combines with the trace
points on context switch as they instrument the same locations.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
For threads that run in supervisor mode for some time before
synchronously dropping to user mode, re-initialize the TLS
area to prevent leakage of potentially sensitive information.
We did this already for CONFIG_THREAD_USERSPACE_LOCAL_DATA
but not the new CONFIG_THREAD_LOCAL_STORAGE.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This enables storing errno in the thread local storage area.
With this enabled, a syscall to access errno can be avoided
when userspace is also enabled.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
This adds the common struct fields and functions to support
the implementation of thread local storage in individual
architecture. This uses the thread stack to store TLS data.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Zephyr SMP kernels need to be able to run on architectures with
incoherent caches. Naive implementation of synchronization on such
architectures requires extensive cache flushing (e.g. flush+invalidate
everything on every spin lock operation, flush on every unlock!) and
is a performance problem.
Instead, many of these systems will have access to separate "coherent"
(usually uncached) and "incoherent" regions of memory. Where this is
available, place all writable data sections by default into the
coherent region. An "__incoherent" attribute flag is defined for data
regions that are known to be CPU-local and which should use the cache.
By default, this is used for stack memory.
Stack memory will be incoherent by default, as by definition it is
local to its current thread. This requires special cache management
on context switch, so an arch API has been added for that.
Also, when enabled, add assertions to strategic places to ensure that
shared kernel data is indeed coherent. We check thread objects, the
_kernel struct, waitq's, timeouts and spinlocks. In practice almost
all kernel synchronization is built on top of these structures, and
any shared data structs will contain at least one of them.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
When threads exited we were leaving dangling references to
them in the domain's mem_domain_q.
z_thread_single_abort() now calls into the memory domain
code via z_mem_domain_exit_thread() to take it off.
The thread setup code now invokes z_mem_domain_init_thread(),
avoiding extra checks in k_mem_domain_add_thread(), we know
the object isn't currently a member of a doamin.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
When CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT is not defined, cycles_to_wait
is calculated using a division operation. This calculation could take a
significant amount of time (a few microseconds on some architectures,
depending on the system clock).
In the special case of zero usec_to_wait, the function should return
immediately rather than spend time on calculations.
For example, in spi driver (spi_context.h, _spi_context_cs_control()),
k_busy_wait() can be called with zero delay. This can increase spi
transaction time significantly.
Another improvement, is moving the start_cycles initialization
before cycles_to_wait calculation, so the time it takes to calculate
cycles_to_wait will be taken into account.
Signed-off-by: David Komel <a8961713@gmail.com>
Both operands of an operator in the arithmetic conversions
performed shall have the same essential type category.
Changes are related to converting the integer constants to the
unsigned integer constants
Signed-off-by: Aastha Grover <aastha.grover@intel.com>
k_thread_create() works as expected on both uninitialized memory,
or threads that have completely exited.
However, horrible and difficult to comprehend things can happen if a
thread object is already being used by the kernel and
k_thread_create() is called on it.
Historically this has been a problem with test cases trying to be
parsimonious with thread objects and not properly cleaning up
after themselves. Add an assertion for this which should catch
both the illegal creation of a thread already active, or threads
racing to create the same thread object.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
We make a policy change here: all threads are members of a
memory domain, never NULL. We introduce a default memory domain
for threads that haven't been assigned to or inherited another one.
Primary motivation for this change is better MMU support, as
one common configuration will be to maintain page tables at
the memory domain level.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
These stacks are appropriate for threads that run purely in
supervisor mode, and also as stacks for interrupt and exception
handling.
Two new arch defines are introduced:
- ARCH_KERNEL_STACK_GUARD_SIZE
- ARCH_KERNEL_STACK_OBJ_ALIGN
New public declaration macros:
- K_KERNEL_STACK_RESERVED
- K_KERNEL_STACK_EXTERN
- K_KERNEL_STACK_DEFINE
- K_KERNEL_STACK_ARRAY_DEFINE
- K_KERNEL_STACK_MEMBER
- K_KERNEL_STACK_SIZEOF
If user mode is not enabled, K_KERNEL_STACK_* and K_THREAD_STACK_*
are equivalent.
Separately generated privilege elevation stacks are now declared
like kernel stacks, removing the need for K_PRIVILEGE_STACK_ALIGN.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This now takes a stack pointer as an argument with TLS
and random offsets accounted for properly.
Based on #24467 authored by Flavio Ceolin.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
The core kernel computes the initial stack pointer
for a thread, properly aligning it and subtracting out
any random offsets or thread-local storage areas.
arch_new_thread() no longer needs to make any calculations,
an initial stack frame may be placed at the bounds of
the new 'stack_ptr' parameter passed in. This parameter
replaces 'stack_size'.
thread->stack_info is now set before arch_new_thread()
is invoked, z_new_thread_init() has been removed.
The values populated may need to be adjusted on arches
which carve-out MPU guard space from the actual stack
buffer.
thread->stack_info now has a new member 'delta' which
indicates any offset applied for TLS or random offset.
It's used so the calculations don't need to be repeated
if the thread later drops to user mode.
CONFIG_INIT_STACKS logic is now performed inside
z_setup_new_thread(), before arch_new_thread() is called.
thread->stack_info is now defined as the canonical
user-accessible area within the stack object, including
random offsets and TLS. It will never include any
carved-out memory for MPU guards and must be updated at
runtime if guards are removed.
Available stack space is now optimized. Some arches may
need to significantly round up the buffer size to account
for page-level granularity or MPU power-of-two requirements.
This space is now accounted for and used by virtue of
the Z_THREAD_STACK_SIZE_ADJUST() call in z_setup_new_thread.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
arch_new_thread() passes along the thread priority and option
flags, but these are already initialized in thread->base and
can be accessed there if needed.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Unit tests were failing to build because random header was included by
kernel_includes.h. The problem is that rand32.h includes a generated
file that is either not generated or not included when building unit
tests. Also, it is better to limit the scope of this file to where it is
used.
Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
Certain types of system call validation may need to be pushed
deeper in the implementation and not performed in the verification
function. If such checks are only pertinent when the caller was
from user mode, we need an API to detect this situation.
This is implemented by having thread->syscall_frame be non-NULL
only while a user system call is in progress. The template for the
system call marshalling functions is changed to clear this value
on exit.
A test is added to prove that this works.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Ensures that TLS from when the thread was in supervisor mode
is erased, rather than rely on the arch code to do it.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This commit renames the Kconfig `FP_SHARING` symbol to `FPU_SHARING`,
since this symbol specifically refers to the hardware FPU sharing
support by means of FPU context preservation, and the "FP" prefix is
not fully descriptive of that; leaving room for ambiguity.
Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
Revert commit mistakenly iterating over static threads in
k_thread_foreach functions. The static threads where already included
in the for-loop, and is now duplicated.
This reverts commit bd3b4b0caf.
Signed-off-by: Joakim Andersson <joakim.andersson@nordicsemi.no>
This commit renames the Kconfig `FLOAT` symbol to `FPU`, since this
symbol only indicates that the hardware Floating Point Unit (FPU) is
used and does not imply and/or indicate the general availability of
toolchain-level floating point support (i.e. this symbol is not
selected when building for an FPU-less platform that supports floating
point operations through the toolchain-provided software floating point
library).
Moreover, given that the symbol that indicates the availability of FPU
is named `CPU_HAS_FPU`, it only makes sense to use "FPU" in the name of
the symbol that enables the FPU.
Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
This operation is formally defined as rounding down a potential
stack pointer value to meet CPU and ABI requirments.
This was previously defined ad-hoc as STACK_ROUND_DOWN().
A new architecture constant ARCH_STACK_PTR_ALIGN is added.
Z_STACK_PTR_ALIGN() is defined in terms of it. This used to
be inconsistently specified as STACK_ALIGN or STACK_PTR_ALIGN;
in the latter case, STACK_ALIGN meant something else, typically
a required alignment for the base of a stack buffer.
STACK_ROUND_UP() only used in practice by Risc-V, delete
elsewhere.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>