zephyr/kernel/microkernel/k_fifo.c
Daniel Leung 74c8852d05 microkernel: remove kernel service dispatch table
This change removes the internal number-to-function mapping
of microkernel services. Instead, function pointers are used
to specify which service to use.

This is in preparation for private kernel objects. Before this,
only kernel objects that are defined in MDEF files would have
corresponding functions included in the final binary, via sysgen
by populating an array of number-to-function mapping. This
causes an issue when a certain type of objects are all defined
with source code, and never in MDEF file. The corresponding
mapping would be deleted, and the functions are never included
in the binary. For example, if no mutexes are defined in MDEF
file, the _k_mutex_*() functions would not be included.

With this change, any usage of private kernel objects will hint
to the linker that those functions are needed, and should not be
removed from final binary.

Change-Id: If48864abcd6471bcb7964ec00fe668bcabe3239b
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
2016-02-05 20:14:46 -05:00

386 lines
8.3 KiB
C

/*
* Copyright (c) 1997-2010, 2013-2014 Wind River Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3) Neither the name of Wind River Systems nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief FIFO kernel services
*
* This file contains all the services needed for the implementation of a FIFO
* for the microkernel.
*
*
*/
#include <micro_private.h>
#include <string.h>
#include <toolchain.h>
#include <sections.h>
/**
*
* @brief Finish performing an incomplete FIFO enqueue request
*
* @return N/A
*/
void _k_fifo_enque_reply(struct k_args *A)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
if (A->Time.timer)
FREETIMER(A->Time.timer);
if (unlikely(A->Comm == _K_SVC_FIFO_ENQUE_REPLY_TIMEOUT)) {
REMOVE_ELM(A);
A->Time.rcode = RC_TIME;
} else {
A->Time.rcode = RC_OK;
}
#else
A->Time.rcode = RC_OK;
#endif
_k_state_bit_reset(A->Ctxt.proc, TF_ENQU);
}
/**
*
* @brief Finish performing an incomplete FIFO enqueue request with timeout.
*
* @param A Pointer to a k_args structure
*
* @return N/A
*
* @sa _k_fifo_enque_reply
*/
void _k_fifo_enque_reply_timeout(struct k_args *A)
{
_k_fifo_enque_reply(A);
}
/**
*
* @brief Perform a FIFO enqueue request
*
* @return N/A
*/
void _k_fifo_enque_request(struct k_args *A)
{
struct k_args *W;
struct que_struct *Q;
int Qid, n, w;
char *p, *q; /* Ski char->uint32_t ??? */
Qid = A->Args.q1.queue;
Q = _k_fifo_list + OBJ_INDEX(Qid);
w = OCTET_TO_SIZEOFUNIT(Q->Esize);
q = A->Args.q1.data;
n = Q->Nused;
if (n < Q->Nelms) {
W = Q->Waiters;
if (W) {
Q->Waiters = W->Forw;
p = W->Args.q1.data;
memcpy(p, q, w);
#ifdef CONFIG_SYS_CLOCK_EXISTS
if (W->Time.timer) {
_k_timeout_cancel(W);
W->Comm = _K_SVC_FIFO_DEQUE_REPLY;
} else {
#endif
W->Time.rcode = RC_OK;
_k_state_bit_reset(W->Ctxt.proc, TF_DEQU);
}
#ifdef CONFIG_SYS_CLOCK_EXISTS
}
#endif
else {
p = Q->Enqp;
memcpy(p, q, w);
p = (char *)((int)p + w);
if (p == Q->Endp)
Q->Enqp = Q->Base;
else
Q->Enqp = p;
Q->Nused = ++n;
#ifdef CONFIG_OBJECT_MONITOR
if (Q->Hmark < n)
Q->Hmark = n;
#endif
}
A->Time.rcode = RC_OK;
#ifdef CONFIG_OBJECT_MONITOR
Q->Count++;
#endif
} else {
if (likely(A->Time.ticks != TICKS_NONE)) {
A->Ctxt.proc = _k_current_task;
A->Prio = _k_current_task->Prio;
_k_state_bit_set(_k_current_task, TF_ENQU);
INSERT_ELM(Q->Waiters, A);
#ifdef CONFIG_SYS_CLOCK_EXISTS
if (A->Time.ticks == TICKS_UNLIMITED)
A->Time.timer = NULL;
else {
A->Comm = _K_SVC_FIFO_ENQUE_REPLY_TIMEOUT;
_k_timeout_alloc(A);
}
#endif
} else {
A->Time.rcode = RC_FAIL;
}
}
}
int _task_fifo_put(kfifo_t queue, /* FIFO queue */
void *data, /* ptr to data to add to queue */
int32_t time /* maximum number of ticks to wait */
)
{
struct k_args A;
A.Comm = _K_SVC_FIFO_ENQUE_REQUEST;
A.Time.ticks = time;
A.Args.q1.data = (char *)data;
A.Args.q1.queue = queue;
KERNEL_ENTRY(&A);
return A.Time.rcode;
}
/**
*
* @brief Finish performing an incomplete FIFO dequeue request
*
* @return N/A
*/
void _k_fifo_deque_reply(struct k_args *A)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
if (A->Time.timer)
FREETIMER(A->Time.timer);
if (unlikely(A->Comm == _K_SVC_FIFO_DEQUE_REPLY_TIMEOUT)) {
REMOVE_ELM(A);
A->Time.rcode = RC_TIME;
} else {
A->Time.rcode = RC_OK;
}
#else
A->Time.rcode = RC_OK;
#endif
_k_state_bit_reset(A->Ctxt.proc, TF_DEQU);
}
/**
*
* @brief Finish performing an incomplete FIFO dequeue request with timeout.
*
* @param A Pointer to a k_args structure.
*
* @return N/A
*
* @sa _k_fifo_deque_reply
*/
void _k_fifo_deque_reply_timeout(struct k_args *A)
{
_k_fifo_deque_reply(A);
}
/**
*
* @brief Perform FIFO dequeue request
*
* @return N/A
*/
void _k_fifo_deque_request(struct k_args *A)
{
struct k_args *W;
struct que_struct *Q;
int Qid, n, w;
char *p, *q; /* idem */
Qid = A->Args.q1.queue;
Q = _k_fifo_list + OBJ_INDEX(Qid);
w = OCTET_TO_SIZEOFUNIT(Q->Esize);
p = A->Args.q1.data;
n = Q->Nused;
if (n) {
q = Q->Deqp;
memcpy(p, q, w);
q = (char *)((int)q + w);
if (q == Q->Endp)
Q->Deqp = Q->Base;
else
Q->Deqp = q;
A->Time.rcode = RC_OK;
W = Q->Waiters;
if (W) {
Q->Waiters = W->Forw;
p = Q->Enqp;
q = W->Args.q1.data;
w = OCTET_TO_SIZEOFUNIT(Q->Esize);
memcpy(p, q, w);
p = (char *)((int)p + w);
if (p == Q->Endp)
Q->Enqp = Q->Base;
else
Q->Enqp = p;
#ifdef CONFIG_SYS_CLOCK_EXISTS
if (W->Time.timer) {
_k_timeout_cancel(W);
W->Comm = _K_SVC_FIFO_ENQUE_REPLY;
} else {
#endif
W->Time.rcode = RC_OK;
_k_state_bit_reset(W->Ctxt.proc, TF_ENQU);
#ifdef CONFIG_SYS_CLOCK_EXISTS
}
#endif
#ifdef CONFIG_OBJECT_MONITOR
Q->Count++;
#endif
} else
Q->Nused = --n;
} else {
if (likely(A->Time.ticks != TICKS_NONE)) {
A->Ctxt.proc = _k_current_task;
A->Prio = _k_current_task->Prio;
_k_state_bit_set(_k_current_task, TF_DEQU);
INSERT_ELM(Q->Waiters, A);
#ifdef CONFIG_SYS_CLOCK_EXISTS
if (A->Time.ticks == TICKS_UNLIMITED)
A->Time.timer = NULL;
else {
A->Comm = _K_SVC_FIFO_DEQUE_REPLY_TIMEOUT;
_k_timeout_alloc(A);
}
#endif
} else {
A->Time.rcode = RC_FAIL;
}
}
}
/**
*
* @brief FIFO dequeue request
*
* This routine tries to read a data element from the FIFO.
*
* If the FIFO is not empty, the oldest entry is removed and copied to the
* address provided by the caller.
* @param queue FIFO queue
* @param data Where to store FIFO entry
* @param time Maximum number of ticks to wait
*
* @return RC_OK, RC_FAIL, RC_TIME on success, failure, timeout respectively
*/
int _task_fifo_get(kfifo_t queue, void *data, int32_t time)
{
struct k_args A;
A.Comm = _K_SVC_FIFO_DEQUE_REQUEST;
A.Time.ticks = time;
A.Args.q1.data = (char *)data;
A.Args.q1.queue = queue;
KERNEL_ENTRY(&A);
return A.Time.rcode;
}
/**
*
* @brief Perform miscellaneous FIFO request
* @param A Kernel Argument
*
* @return N/A
*/
void _k_fifo_ioctl(struct k_args *A)
{
struct que_struct *Q;
int Qid;
Qid = A->Args.q1.queue;
Q = _k_fifo_list + OBJ_INDEX(Qid);
if (A->Args.q1.size) {
if (Q->Nused) {
struct k_args *X;
while ((X = Q->Waiters)) {
Q->Waiters = X->Forw;
#ifdef CONFIG_SYS_CLOCK_EXISTS
if (likely(X->Time.timer)) {
_k_timeout_cancel(X);
X->Comm = _K_SVC_FIFO_ENQUE_REPLY;
} else {
#endif
X->Time.rcode = RC_FAIL;
_k_state_bit_reset(X->Ctxt.proc, TF_ENQU);
#ifdef CONFIG_SYS_CLOCK_EXISTS
}
#endif
}
}
Q->Nused = 0;
Q->Enqp = Q->Deqp = Q->Base;
A->Time.rcode = RC_OK;
} else
A->Time.rcode = Q->Nused;
}
/**
*
* @brief Miscellaneous FIFO request
*
* Depending upon the chosen operation, this routine will ...
* 1. <op> = 0 : query the number of FIFO entries
* 2. <op> = 1 : purge the FIFO of its entries
*
* @param queue FIFO queue
* @param op 0 for status query and 1 for purge
* @return # of FIFO entries on query; RC_OK on purge
*/
int _task_fifo_ioctl(kfifo_t queue, int op)
{
struct k_args A;
A.Comm = _K_SVC_FIFO_IOCTL;
A.Args.q1.queue = queue;
A.Args.q1.size = op;
KERNEL_ENTRY(&A);
return A.Time.rcode;
}