zephyr/drivers/timer/nrf_rtc_timer.c
Carles Cufi ca0951d42d drivers: timer: Optimize RTC driver and prevent past events
The nRF RTC driver, which is used a system clock driver due to the lack
of SysTick hardware on the SoC, was using too much CPU time in its
_timer_idle_exit() implementation due to the use of 64-bit arithmetical
operations. This was causing the ISR wrapper to add excessive latency to
critical interrupts, causing BLE controller asserts.
This patch addresses the issue by using exclusively RTC ticks instead of
OS ticks, thus avoiding the necessity to convert during
_timer_idle_exit() calls, which are the most critical to interrupt
latency.

In addition the driver is now able to detect setting tick events in the
past due to it being interrupted by a higher priority context, and will
reschedule and trigger the ISR at the same time.

Change-id: I56a3be96b9fdd554c3650012d647af2f0415eb8a
Signed-off-by: Vinayak Chettimada <vinayak.kariappa.chettimada@nordicsemi.no>
Signed-off-by: Carles Cufi <carles.cufi@nordicsemi.no>
2016-12-16 12:51:15 +00:00

208 lines
4.9 KiB
C

/*
* Copyright (c) 2016 Nordic Semiconductor ASA
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <soc.h>
#include <clock_control.h>
#include <system_timer.h>
#include <drivers/clock_control/nrf5_clock_control.h>
#define RTC_TICKS ((uint32_t)(((((uint64_t)1000000UL / \
CONFIG_SYS_CLOCK_TICKS_PER_SEC) * \
1000000000UL) / 30517578125UL)) & 0x00FFFFFF)
extern int64_t _sys_clock_tick_count;
extern int32_t _sys_idle_elapsed_ticks;
static uint32_t rtc_clock_tick_count;
#ifdef CONFIG_TICKLESS_IDLE
static uint8_t volatile isr_req;
static uint8_t isr_ack;
#endif /* CONFIG_TICKLESS_IDLE */
static uint32_t rtc_compare_set(uint32_t rtc_ticks)
{
uint32_t prev, cc, elapsed_ticks;
uint8_t retry = 10;
prev = NRF_RTC1->COUNTER;
do {
/* Assert if retries failed to set compare in the future */
__ASSERT_NO_MSG(retry);
retry--;
/* update with elapsed ticks from h/w */
elapsed_ticks = (prev - rtc_clock_tick_count) & 0x00FFFFFF;
/* setup next RTC compare event by ticks */
cc = (rtc_clock_tick_count + elapsed_ticks + rtc_ticks) &
0x00FFFFFF;
NRF_RTC1->CC[0] = cc;
prev = NRF_RTC1->COUNTER;
} while (((cc - prev) & 0x00FFFFFF) < 3);
#ifdef CONFIG_TICKLESS_IDLE
/* If system clock ticks have elapsed, pend RTC IRQ which will
* call announce
*/
if (elapsed_ticks >= rtc_ticks) {
uint8_t req;
/* pending the interrupt does not trigger the RTC event, hence
* use a request/ack mechanism to let the ISR know that the
* interrupt was requested
*/
req = isr_req + 1;
if (req != isr_ack) {
isr_req = req;
}
_NvicIrqPend(NRF5_IRQ_RTC1_IRQn);
}
#endif /* CONFIG_TICKLESS_IDLE */
return elapsed_ticks;
}
#ifdef CONFIG_TICKLESS_IDLE
void _timer_idle_enter(int32_t ticks)
{
/* restrict ticks to max supported by RTC */
if ((ticks < 0) || (ticks > (0x00FFFFFF / RTC_TICKS))) {
ticks = 0x00FFFFFF / RTC_TICKS;
}
/* Postpone RTC compare event by requested system clock ticks */
rtc_compare_set(ticks * RTC_TICKS);
}
void _timer_idle_exit(void)
{
/* Advance RTC compare event to next system clock tick */
rtc_compare_set(RTC_TICKS);
}
#endif /* CONFIG_TICKLESS_IDLE */
static void rtc1_nrf5_isr(void *arg)
{
#ifdef CONFIG_TICKLESS_IDLE
uint8_t req;
ARG_UNUSED(arg);
req = isr_req;
/* iterate here since pending the interrupt can be done from higher
* priority, and thus queuing multiple triggers
*/
while (NRF_RTC1->EVENTS_COMPARE[0] || (req != isr_ack)) {
uint32_t elapsed_ticks;
NRF_RTC1->EVENTS_COMPARE[0] = 0;
if (req != isr_ack) {
isr_ack = req;
req = isr_req;
elapsed_ticks = (NRF_RTC1->COUNTER -
rtc_clock_tick_count)
& 0x00FFFFFF;
} else {
elapsed_ticks = rtc_compare_set(RTC_TICKS);
}
#else
ARG_UNUSED(arg);
if (NRF_RTC1->EVENTS_COMPARE[0]) {
uint32_t elapsed_ticks;
NRF_RTC1->EVENTS_COMPARE[0] = 0;
elapsed_ticks = rtc_compare_set(RTC_TICKS);
#endif
rtc_clock_tick_count += elapsed_ticks;
rtc_clock_tick_count &= 0x00FFFFFF;
/* update with elapsed ticks from the hardware */
_sys_idle_elapsed_ticks = elapsed_ticks / RTC_TICKS;
_sys_clock_tick_announce();
}
}
int _sys_clock_driver_init(struct device *device)
{
struct device *clock;
ARG_UNUSED(device);
clock = device_get_binding(CONFIG_CLOCK_CONTROL_NRF5_K32SRC_DRV_NAME);
if (!clock) {
return -1;
}
clock_control_on(clock, (void *)CLOCK_CONTROL_NRF5_K32SRC);
/* TODO: replace with counter driver to access RTC */
NRF_RTC1->PRESCALER = 0;
NRF_RTC1->CC[0] = RTC_TICKS;
NRF_RTC1->EVTENSET = RTC_EVTENSET_COMPARE0_Msk;
NRF_RTC1->INTENSET = RTC_INTENSET_COMPARE0_Msk;
IRQ_CONNECT(NRF5_IRQ_RTC1_IRQn, 1, rtc1_nrf5_isr, 0, 0);
irq_enable(NRF5_IRQ_RTC1_IRQn);
NRF_RTC1->TASKS_START = 1;
return 0;
}
uint32_t k_cycle_get_32(void)
{
uint32_t elapsed_cycles;
elapsed_cycles = (NRF_RTC1->COUNTER -
(_sys_clock_tick_count * RTC_TICKS)) & 0x00FFFFFF;
return (_sys_clock_tick_count * sys_clock_hw_cycles_per_tick) +
elapsed_cycles;
}
#ifdef CONFIG_SYSTEM_CLOCK_DISABLE
/**
*
* @brief Stop announcing ticks into the kernel
*
* This routine disables the RTC1 so that timer interrupts are no
* longer delivered.
*
* @return N/A
*/
void sys_clock_disable(void)
{
irq_disable(NRF5_IRQ_RTC1_IRQn);
NRF_RTC1->TASKS_STOP = 1;
/* TODO: turn off (release) 32 KHz clock source.
* Turning off of 32 KHz clock source is not implemented in clock
* driver.
*/
}
#endif /* CONFIG_SYSTEM_CLOCK_DISABLE */