zephyr/tests/kernel/timer/timer_api/src/main.c
Michał Barnaś dae8efa692 ztest: remove the obsolete NULL appended to zassert macros
This commit removes the usage of NULL parameter as message in
zassert_* macros after making it optional

Signed-off-by: Michał Barnaś <mb@semihalf.com>
2022-09-09 07:05:38 -04:00

843 lines
25 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <zephyr/ztest.h>
#include <zephyr/types.h>
struct timer_data {
int expire_cnt;
int stop_cnt;
int64_t timestamp;
};
#define DURATION 100
#define PERIOD 50
#define EXPIRE_TIMES 4
#define WITHIN_ERROR(var, target, epsilon) (llabs((int64_t) ((target) - (var))) <= (epsilon))
/* ms can be converted precisely to ticks only when a ms is exactly
* represented by an integral number of ticks. If the conversion is
* not precise, then the reverse conversion of a difference in ms can
* end up being off by a tick depending on the relative error between
* the first and second ms conversion, and we need to adjust the
* tolerance interval.
*/
#define INEXACT_MS_CONVERT ((CONFIG_SYS_CLOCK_TICKS_PER_SEC % MSEC_PER_SEC) != 0)
#if CONFIG_NRF_RTC_TIMER
/* On Nordic SOCs one or both of the tick and busy-wait clocks may
* derive from sources that have slews that sum to +/- 13%.
*/
#define BUSY_TICK_SLEW_PPM 130000U
#else
/* On other platforms assume the clocks are perfectly aligned. */
#define BUSY_TICK_SLEW_PPM 0U
#endif
#define PPM_DIVISOR 1000000U
/* If the tick clock is faster or slower than the busywait clock the
* remaining time for a partially elapsed timer in ticks will be
* larger or smaller than expected by a value that depends on the slew
* between the two clocks. Produce a maximum error for a given
* duration in microseconds.
*/
#define BUSY_SLEW_THRESHOLD_TICKS(_us) \
k_us_to_ticks_ceil32((_us) * BUSY_TICK_SLEW_PPM \
/ PPM_DIVISOR)
static void duration_expire(struct k_timer *timer);
static void duration_stop(struct k_timer *timer);
/** TESTPOINT: init timer via K_TIMER_DEFINE */
K_TIMER_DEFINE(ktimer, duration_expire, duration_stop);
static struct k_timer duration_timer;
static struct k_timer period0_timer;
static struct k_timer expire_timer;
static struct k_timer sync_timer;
static struct k_timer periodicity_timer;
static struct k_timer status_timer;
static struct k_timer status_anytime_timer;
static struct k_timer status_sync_timer;
static struct k_timer remain_timer;
static ZTEST_BMEM struct timer_data tdata;
#define TIMER_ASSERT(exp, tmr) \
do { \
if (!(exp)) { \
k_timer_stop(tmr); \
zassert_true(exp); \
} \
} while (0)
static void init_timer_data(void)
{
tdata.expire_cnt = 0;
tdata.stop_cnt = 0;
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
k_usleep(1); /* align to tick */
}
tdata.timestamp = k_uptime_get();
}
static bool interval_check(int64_t interval, int64_t desired)
{
int64_t slop = INEXACT_MS_CONVERT ? 1 : 0;
/* Tickless kernels will advance time inside of an ISR, so it
* is always possible (especially with high tick rates and
* slow CPUs) for us to arrive at the uptime check above too
* late to see a full period elapse before the next period.
* We can alias at both sides of the interval, so two
* one-ticks deltas (NOT one two-tick delta!)
*/
if (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
slop += 2 * k_ticks_to_ms_ceil32(1);
}
if (!WITHIN_ERROR(interval, desired, slop)) {
return false;
}
return true;
}
/* entry routines */
static void duration_expire(struct k_timer *timer)
{
/** TESTPOINT: expire function */
int64_t interval = k_uptime_delta(&tdata.timestamp);
tdata.expire_cnt++;
if (tdata.expire_cnt == 1) {
TIMER_ASSERT(interval_check(interval, DURATION), timer);
} else {
TIMER_ASSERT(interval_check(interval, PERIOD), timer);
}
if (tdata.expire_cnt >= EXPIRE_TIMES) {
k_timer_stop(timer);
}
}
static void duration_stop(struct k_timer *timer)
{
tdata.stop_cnt++;
}
static void period0_expire(struct k_timer *timer)
{
tdata.expire_cnt++;
}
static void status_expire(struct k_timer *timer)
{
/** TESTPOINT: status get upon timer expired */
TIMER_ASSERT(k_timer_status_get(timer) == 1, timer);
/** TESTPOINT: remaining get upon timer expired */
TIMER_ASSERT(k_timer_remaining_get(timer) >= PERIOD, timer);
if (tdata.expire_cnt >= EXPIRE_TIMES) {
k_timer_stop(timer);
}
}
static void busy_wait_ms(int32_t ms)
{
k_busy_wait(ms*1000);
}
static void status_stop(struct k_timer *timer)
{
/** TESTPOINT: remaining get upon timer stopped */
TIMER_ASSERT(k_timer_remaining_get(timer) == 0, timer);
}
/**
* @brief Tests for the Timer kernel object
* @defgroup kernel_timer_tests Timer
* @ingroup all_tests
* @{
* @}
*/
/**
* @brief Test duration and period of Timer
*
* Validates initial duration and period of timer.
*
* It initializes the timer with k_timer_init(), then starts the timer
* using k_timer_start() with specific initial duration and period.
* Stops the timer using k_timer_stop() and checks for proper completion
* of duration and period.
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_stop(), k_uptime_get(),
* k_busy_wait()
*/
ZTEST_USER(timer_api, test_timer_duration_period)
{
init_timer_data();
/** TESTPOINT: init timer via k_timer_init */
k_timer_start(&duration_timer, K_MSEC(DURATION), K_MSEC(PERIOD));
busy_wait_ms(DURATION + PERIOD * EXPIRE_TIMES + PERIOD / 2);
/** TESTPOINT: check expire and stop times */
TIMER_ASSERT(tdata.expire_cnt == EXPIRE_TIMES, &duration_timer);
TIMER_ASSERT(tdata.stop_cnt == 1, &duration_timer);
k_timer_start(&duration_timer, K_FOREVER, K_MSEC(PERIOD));
TIMER_ASSERT(tdata.stop_cnt == 1, &duration_timer);
/* cleanup environment */
k_timer_stop(&duration_timer);
}
/**
*
* @brief Test restart the timer
*
* @details Validates initial duration and period of timer. Start the timer with
* specific duration and period. Then starts the timer again, and check
* the status of timer.
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_stop, k_uptime_get(),
* k_busy_wait()
*
*/
ZTEST_USER(timer_api, test_timer_restart)
{
init_timer_data();
k_timer_start(&status_anytime_timer, K_MSEC(DURATION),
K_MSEC(PERIOD));
busy_wait_ms(DURATION + PERIOD * (EXPIRE_TIMES - 1) + PERIOD / 2);
/** TESTPOINT: restart the timer */
k_timer_start(&status_anytime_timer, K_MSEC(DURATION),
K_MSEC(PERIOD));
/* Restart timer, timer's status is reset to zero */
TIMER_ASSERT(k_timer_status_get(&status_anytime_timer) == 0,
&status_anytime_timer);
/* cleanup environment */
k_timer_stop(&status_anytime_timer);
}
/**
* @brief Test Timer with zero period value
*
* Validates initial timer duration, keeping timer period to zero.
* Basically, acting as one-shot timer.
* It initializes the timer with k_timer_init(), then starts the timer
* using k_timer_start() with specific initial duration and period as
* zero. Stops the timer using k_timer_stop() and checks for proper
* completion.
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_stop(), k_uptime_get(),
* k_busy_wait()
*/
ZTEST_USER(timer_api, test_timer_period_0)
{
init_timer_data();
/** TESTPOINT: set period 0 */
k_timer_start(&period0_timer,
K_TICKS(k_ms_to_ticks_floor32(DURATION)
- BUSY_SLEW_THRESHOLD_TICKS(DURATION
* USEC_PER_MSEC)),
K_NO_WAIT);
/* Need to wait at least 2 durations to ensure one-shot behavior. */
busy_wait_ms(2 * DURATION + 1);
/** TESTPOINT: ensure it is one-shot timer */
TIMER_ASSERT((tdata.expire_cnt == 1)
|| (INEXACT_MS_CONVERT
&& (tdata.expire_cnt == 0)), &period0_timer);
TIMER_ASSERT(tdata.stop_cnt == 0, &period0_timer);
/* cleanup environment */
k_timer_stop(&period0_timer);
}
/**
* @brief Test Timer with K_FOREVER period value
*
* Validates initial timer duration, keeping timer period to K_FOREVER.
* Basically, acting as one-shot timer.
* It initializes the timer with k_timer_init(), then starts the timer
* using k_timer_start() with specific initial duration and period as
* zero. Stops the timer using k_timer_stop() and checks for proper
* completion.
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_stop(), k_uptime_get(),
* k_busy_wait()
*/
ZTEST_USER(timer_api, test_timer_period_k_forever)
{
init_timer_data();
/** TESTPOINT: set period 0 */
k_timer_start(
&period0_timer,
K_TICKS(k_ms_to_ticks_floor32(DURATION) -
BUSY_SLEW_THRESHOLD_TICKS(DURATION * USEC_PER_MSEC)),
K_FOREVER);
tdata.timestamp = k_uptime_get();
/* Need to wait at least 2 durations to ensure one-shot behavior. */
busy_wait_ms(2 * DURATION + 1);
/** TESTPOINT: ensure it is one-shot timer */
TIMER_ASSERT((tdata.expire_cnt == 1) ||
(INEXACT_MS_CONVERT && (tdata.expire_cnt == 0)),
&period0_timer);
TIMER_ASSERT(tdata.stop_cnt == 0, &period0_timer);
/* cleanup environment */
k_timer_stop(&period0_timer);
}
/**
* @brief Test Timer without any timer expiry callback function
*
* Validates timer without any expiry_fn(set to NULL). expiry_fn() is a
* function that is invoked each time the timer expires.
*
* It initializes the timer with k_timer_init(), then starts the timer
* using k_timer_start(). Stops the timer using k_timer_stop() and
* checks for expire_cnt to zero, as expiry_fn was not defined at all.
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_stop(), k_uptime_get(),
* k_busy_wait()
*/
ZTEST_USER(timer_api, test_timer_expirefn_null)
{
init_timer_data();
/** TESTPOINT: expire function NULL */
k_timer_start(&expire_timer, K_MSEC(DURATION), K_MSEC(PERIOD));
busy_wait_ms(DURATION + PERIOD * EXPIRE_TIMES + PERIOD / 2);
k_timer_stop(&expire_timer);
/** TESTPOINT: expire handler is not invoked */
TIMER_ASSERT(tdata.expire_cnt == 0, &expire_timer);
/** TESTPOINT: stop handler is invoked */
TIMER_ASSERT(tdata.stop_cnt == 1, &expire_timer);
/* cleanup environment */
k_timer_stop(&expire_timer);
}
/* Wait for the next expiration of an OS timer tick, to synchronize
* test start
*/
static void tick_sync(void)
{
k_timer_start(&sync_timer, K_NO_WAIT, K_MSEC(1));
k_timer_status_sync(&sync_timer);
k_timer_stop(&sync_timer);
}
/**
* @brief Test to check timer periodicity
*
* Timer test to check for the predictability with which the timer
* expires depending on the period configured.
*
* It initializes the timer with k_timer_init(), then starts the timer
* using k_timer_start() with specific period. It resets the timers
* status to zero with k_timer_status_sync and identifies the delta
* between each timer expiry to check for the timer expiration period
* correctness. Finally, stops the timer using k_timer_stop().
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_status_sync(),
* k_timer_stop(), k_uptime_get(), k_uptime_delta()
*/
ZTEST_USER(timer_api, test_timer_periodicity)
{
uint64_t period_ms = k_ticks_to_ms_floor64(k_ms_to_ticks_ceil32(PERIOD));
int64_t delta;
/* Start at a tick boundary, otherwise a tick expiring between
* the unlocked (and unlockable) start/uptime/sync steps below
* will throw off the math.
*/
tick_sync();
init_timer_data();
/** TESTPOINT: set duration 0 */
k_timer_start(&periodicity_timer, K_NO_WAIT, K_MSEC(PERIOD));
/* clear the expiration that would have happened due to
* whatever duration that was set. Since timer is likely
* to fire before call to k_timer_status_sync(), we have
* to synchronize twice to ensure that the timestamp will
* be fetched as soon as possible after timer firing.
*/
k_timer_status_sync(&periodicity_timer);
k_timer_status_sync(&periodicity_timer);
tdata.timestamp = k_uptime_get();
for (int i = 0; i < EXPIRE_TIMES; i++) {
/** TESTPOINT: expired times returned by status sync */
TIMER_ASSERT(k_timer_status_sync(&periodicity_timer) == 1,
&periodicity_timer);
delta = k_uptime_delta(&tdata.timestamp);
/** TESTPOINT: check if timer fired within 1ms of the
* expected period (firing time).
*
* Please note, that expected firing time is not the
* one requested, as the kernel uses the ticks to manage
* time. The actual period will be equal to [tick time]
* multiplied by k_ms_to_ticks_ceil32(PERIOD).
*
* In the case of inexact conversion the delta will
* occasionally be one less than the expected number.
*/
TIMER_ASSERT(WITHIN_ERROR(delta, period_ms, 1)
|| (INEXACT_MS_CONVERT
&& (delta == period_ms - 1)),
&periodicity_timer);
}
/* cleanup environment */
k_timer_stop(&periodicity_timer);
}
/**
* @brief Test Timer status and time remaining before next expiry
*
* Timer test to validate timer status and next trigger expiry time
*
* It initializes the timer with k_timer_init(), then starts the timer
* using k_timer_start() and checks for timer current status with
* k_timer_status_get() and remaining time before next expiry using
* k_timer_remaining_get(). Stops the timer using k_timer_stop().
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_status_get(),
* k_timer_remaining_get(), k_timer_stop()
*/
ZTEST_USER(timer_api, test_timer_status_get)
{
init_timer_data();
k_timer_start(&status_timer, K_MSEC(DURATION), K_MSEC(PERIOD));
/** TESTPOINT: status get upon timer starts */
TIMER_ASSERT(k_timer_status_get(&status_timer) == 0, &status_timer);
/** TESTPOINT: remaining get upon timer starts */
TIMER_ASSERT(k_timer_remaining_get(&status_timer) >= DURATION / 2,
&status_timer);
/* cleanup environment */
k_timer_stop(&status_timer);
}
/**
* @brief Test Timer status randomly after certain duration
*
* Validate timer status function using k_timer_status_get().
*
* It initializes the timer with k_timer_init(), then starts the timer
* using k_timer_start() with specific initial duration and period.
* Checks for timer status randomly after certain duration.
* Stops the timer using k_timer_stop().
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_status_get(),
* k_timer_stop(), k_busy_wait()
*/
ZTEST_USER(timer_api, test_timer_status_get_anytime)
{
init_timer_data();
k_timer_start(&status_anytime_timer, K_MSEC(DURATION),
K_MSEC(PERIOD));
busy_wait_ms(DURATION + PERIOD * (EXPIRE_TIMES - 1) + PERIOD / 2);
/** TESTPOINT: status get at any time */
TIMER_ASSERT(k_timer_status_get(&status_anytime_timer) == EXPIRE_TIMES,
&status_anytime_timer);
busy_wait_ms(PERIOD);
TIMER_ASSERT(k_timer_status_get(&status_anytime_timer) == 1,
&status_anytime_timer);
/* cleanup environment */
k_timer_stop(&status_anytime_timer);
}
/**
* @brief Test Timer thread synchronization
*
* Validate thread synchronization by blocking the calling thread until
* the timer expires.
*
* It initializes the timer with k_timer_init(), then starts the timer
* using k_timer_start() and checks timer status with
* k_timer_status_sync() for thread synchronization with expiry count.
* Stops the timer using k_timer_stop.
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_status_sync(),
* k_timer_stop()
*/
ZTEST_USER(timer_api, test_timer_status_sync)
{
init_timer_data();
k_timer_start(&status_sync_timer, K_MSEC(DURATION), K_MSEC(PERIOD));
for (int i = 0; i < EXPIRE_TIMES; i++) {
/** TESTPOINT: check timer not expire */
TIMER_ASSERT(tdata.expire_cnt == i, &status_sync_timer);
/** TESTPOINT: expired times returned by status sync */
TIMER_ASSERT(k_timer_status_sync(&status_sync_timer) == 1,
&status_sync_timer);
/** TESTPOINT: check timer not expire */
TIMER_ASSERT(tdata.expire_cnt == (i + 1), &status_sync_timer);
}
init_timer_data();
k_timer_start(&status_sync_timer, K_MSEC(DURATION), K_MSEC(PERIOD));
busy_wait_ms(PERIOD*2);
zassert_true(k_timer_status_sync(&status_sync_timer));
/* cleanup environment */
k_timer_stop(&status_sync_timer);
zassert_false(k_timer_status_sync(&status_sync_timer));
}
/**
* @brief Test statically defined Timer init
*
* Validate statically defined timer init using K_TIMER_DEFINE
*
* It creates prototype of K_TIMER_DEFINE to statically define timer
* init and starts the timer with k_timer_start() with specific initial
* duration and period. Stops the timer using k_timer_stop() and checks
* for proper completion of duration and period.
*
* @ingroup kernel_timer_tests
*
* @see k_timer_start(), K_TIMER_DEFINE(), k_timer_stop()
* k_uptime_get(), k_busy_wait()
*/
ZTEST_USER(timer_api, test_timer_k_define)
{
init_timer_data();
/** TESTPOINT: init timer via k_timer_init */
k_timer_start(&ktimer, K_MSEC(DURATION), K_MSEC(PERIOD));
busy_wait_ms(DURATION + PERIOD * EXPIRE_TIMES + PERIOD / 2);
/** TESTPOINT: check expire and stop times */
TIMER_ASSERT(tdata.expire_cnt == EXPIRE_TIMES, &ktimer);
TIMER_ASSERT(tdata.stop_cnt == 1, &ktimer);
/* cleanup environment */
k_timer_stop(&ktimer);
init_timer_data();
/** TESTPOINT: init timer via k_timer_init */
k_timer_start(&ktimer, K_MSEC(DURATION), K_MSEC(PERIOD));
/* Call the k_timer_start() again to make sure that
* the initial timeout request gets cancelled and new
* one will get added.
*/
busy_wait_ms(DURATION / 2);
k_timer_start(&ktimer, K_MSEC(DURATION), K_MSEC(PERIOD));
tdata.timestamp = k_uptime_get();
busy_wait_ms(DURATION + PERIOD * EXPIRE_TIMES + PERIOD / 2);
/** TESTPOINT: check expire and stop times */
TIMER_ASSERT(tdata.expire_cnt == EXPIRE_TIMES, &ktimer);
TIMER_ASSERT(tdata.stop_cnt == 1, &ktimer);
/* cleanup environment */
k_timer_stop(&ktimer);
}
static void user_data_timer_handler(struct k_timer *timer);
K_TIMER_DEFINE(timer0, user_data_timer_handler, NULL);
K_TIMER_DEFINE(timer1, user_data_timer_handler, NULL);
K_TIMER_DEFINE(timer2, user_data_timer_handler, NULL);
K_TIMER_DEFINE(timer3, user_data_timer_handler, NULL);
K_TIMER_DEFINE(timer4, user_data_timer_handler, NULL);
static ZTEST_DMEM struct k_timer *user_data_timer[5] = {
&timer0, &timer1, &timer2, &timer3, &timer4
};
static const intptr_t user_data[5] = { 0x1337, 0xbabe, 0xd00d, 0xdeaf, 0xfade };
static ZTEST_BMEM int user_data_correct[5];
static void user_data_timer_handler(struct k_timer *timer)
{
int timer_num = timer == user_data_timer[0] ? 0 :
timer == user_data_timer[1] ? 1 :
timer == user_data_timer[2] ? 2 :
timer == user_data_timer[3] ? 3 :
timer == user_data_timer[4] ? 4 : -1;
if (timer_num == -1) {
return;
}
intptr_t data_retrieved = (intptr_t)k_timer_user_data_get(timer);
user_data_correct[timer_num] = user_data[timer_num] == data_retrieved;
}
/**
* @brief Test user-specific data associated with timer
*
* Validate user-specific data associated with timer
*
* It creates prototype of K_TIMER_DEFINE and starts the timer using
* k_timer_start() with specific initial duration, along with associated
* user data using k_timer_user_data_set and k_timer_user_data_get().
* Stops the timer using k_timer_stop() and checks for correct data
* retrieval after timer completion.
*
* @ingroup kernel_timer_tests
*
* @see K_TIMER_DEFINE(), k_timer_user_data_set(), k_timer_start(),
* k_timer_user_data_get(), k_timer_stop()
*/
ZTEST_USER(timer_api, test_timer_user_data)
{
int ii;
for (ii = 0; ii < 5; ii++) {
intptr_t check;
k_timer_user_data_set(user_data_timer[ii],
(void *)user_data[ii]);
check = (intptr_t)k_timer_user_data_get(user_data_timer[ii]);
zassert_true(check == user_data[ii]);
}
for (ii = 0; ii < 5; ii++) {
k_timer_start(user_data_timer[ii], K_MSEC(50 + ii * 50),
K_NO_WAIT);
}
uint32_t wait_ms = 50 * ii + 50;
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
k_msleep(wait_ms);
} else {
uint32_t wait_us = 1000 * wait_ms;
k_busy_wait(wait_us + (wait_us * BUSY_TICK_SLEW_PPM) / PPM_DIVISOR);
}
for (ii = 0; ii < 5; ii++) {
k_timer_stop(user_data_timer[ii]);
}
for (ii = 0; ii < 5; ii++) {
zassert_true(user_data_correct[ii]);
}
}
/**
* @brief Test accuracy of k_timer_remaining_get()
*
* Validate countdown of time to expiration
*
* Starts a timer, busy-waits for half the DURATION, then checks the
* remaining time to expiration and stops the timer. The remaining time
* should reflect the passage of at least the busy-wait interval.
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_stop(),
* k_timer_remaining_get()
*/
ZTEST_USER(timer_api, test_timer_remaining)
{
uint32_t dur_ticks = k_ms_to_ticks_ceil32(DURATION);
uint32_t target_rem_ticks = k_ms_to_ticks_ceil32(DURATION / 2);
uint32_t rem_ms, rem_ticks, exp_ticks;
int32_t delta_ticks;
uint32_t slew_ticks;
uint64_t now;
init_timer_data();
k_timer_start(&remain_timer, K_MSEC(DURATION), K_NO_WAIT);
busy_wait_ms(DURATION / 2);
rem_ticks = k_timer_remaining_ticks(&remain_timer);
now = k_uptime_ticks();
rem_ms = k_timer_remaining_get(&remain_timer);
exp_ticks = k_timer_expires_ticks(&remain_timer);
k_timer_stop(&remain_timer);
TIMER_ASSERT(tdata.expire_cnt == 0, &remain_timer);
TIMER_ASSERT(tdata.stop_cnt == 1, &remain_timer);
/*
* While the busy_wait_ms() works with the maximum possible resolution,
* the k_timer api is limited by the system tick abstraction. As result
* the value obtained through k_timer_remaining_get() could be larger
* than actual remaining time with maximum error equal to one tick.
*/
zassert_true(rem_ms <= (DURATION / 2) + k_ticks_to_ms_floor64(1),
NULL);
/* Half the value of DURATION in ticks may not be the value of
* half DURATION in ticks, when DURATION/2 is not an integer
* multiple of ticks, so target_rem_ticks is used rather than
* dur_ticks/2. Also set a threshold based on expected clock
* skew.
*/
delta_ticks = (int32_t)(rem_ticks - target_rem_ticks);
slew_ticks = BUSY_SLEW_THRESHOLD_TICKS(DURATION * USEC_PER_MSEC / 2U);
zassert_true(abs(delta_ticks) <= MAX(slew_ticks, 1U),
"tick/busy slew %d larger than test threshold %u",
delta_ticks, slew_ticks);
/* Note +1 tick precision: even though we're calculating in
* ticks, we're waiting in k_busy_wait(), not for a timer
* interrupt, so it's possible for that to take 1 tick longer
* than expected on systems where the requested microsecond
* delay cannot be exactly represented as an integer number of
* ticks.
*/
zassert_true(((int64_t)exp_ticks - (int64_t)now) <= (dur_ticks / 2) + 1,
NULL);
}
ZTEST_USER(timer_api, test_timeout_abs)
{
#ifdef CONFIG_TIMEOUT_64BIT
const uint64_t exp_ms = 10000000;
uint64_t rem_ticks;
uint64_t exp_ticks = k_ms_to_ticks_ceil64(exp_ms);
k_timeout_t t = K_TIMEOUT_ABS_TICKS(exp_ticks), t2;
uint64_t t0, t1;
/* Check the other generator macros to make sure they produce
* the same (whiteboxed) converted values
*/
t2 = K_TIMEOUT_ABS_MS(exp_ms);
zassert_true(t2.ticks == t.ticks);
t2 = K_TIMEOUT_ABS_US(1000 * exp_ms);
zassert_true(t2.ticks == t.ticks);
t2 = K_TIMEOUT_ABS_NS(1000 * 1000 * exp_ms);
zassert_true(t2.ticks == t.ticks);
t2 = K_TIMEOUT_ABS_CYC(k_ms_to_cyc_ceil64(exp_ms));
zassert_true(t2.ticks == t.ticks);
/* Now set the timeout and make sure the expiration time is
* correct vs. current time. Tick units and tick alignment
* makes this math exact, no slop is needed. Note that time
* is advancing always, so we add a retry condition to be sure
* that a tick advance did not happen between our reads of
* "now" and "expires".
*/
init_timer_data();
k_timer_start(&remain_timer, t, K_FOREVER);
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
k_usleep(1);
}
do {
t0 = k_uptime_ticks();
rem_ticks = k_timer_remaining_ticks(&remain_timer);
t1 = k_uptime_ticks();
} while (t0 != t1);
zassert_true(t0 + rem_ticks == exp_ticks,
"Wrong remaining: now %lld rem %lld expires %lld (%d)",
(uint64_t)t0, (uint64_t)rem_ticks, (uint64_t)exp_ticks,
t0+rem_ticks-exp_ticks);
k_timer_stop(&remain_timer);
#endif
}
ZTEST_USER(timer_api, test_sleep_abs)
{
if (!IS_ENABLED(CONFIG_MULTITHREADING)) {
/* k_sleep is not supported when multithreading is off. */
return;
}
const int sleep_ticks = 50;
int64_t start, end;
k_usleep(1); /* tick align */
start = k_uptime_ticks();
k_sleep(K_TIMEOUT_ABS_TICKS(start + sleep_ticks));
end = k_uptime_ticks();
/* Systems with very high tick rates and/or slow idle resume
* (I've seen this on intel_adsp) can occasionally take more
* than a tick to return from k_sleep(). Set a 100us real
* time slop or more depending on the time to resume
*/
k_ticks_t late = end - (start + sleep_ticks);
zassert_true(late >= 0 && late <= MAX(2, k_us_to_ticks_ceil32(250)),
"expected wakeup at %lld, got %lld (late %lld)",
start + sleep_ticks, end, late);
}
static void timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn,
k_timer_stop_t stop_fn)
{
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
k_object_access_grant(timer, k_current_get());
}
k_timer_init(timer, expiry_fn, stop_fn);
}
void *setup_timer_api(void)
{
timer_init(&duration_timer, duration_expire, duration_stop);
timer_init(&period0_timer, period0_expire, NULL);
timer_init(&expire_timer, NULL, duration_stop);
timer_init(&sync_timer, NULL, NULL);
timer_init(&periodicity_timer, NULL, NULL);
timer_init(&status_timer, status_expire, status_stop);
timer_init(&status_anytime_timer, NULL, NULL);
timer_init(&status_sync_timer, duration_expire, duration_stop);
timer_init(&remain_timer, duration_expire, duration_stop);
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
k_thread_access_grant(k_current_get(), &ktimer, &timer0, &timer1,
&timer2, &timer3, &timer4);
}
return NULL;
}
ZTEST_SUITE(timer_api, NULL, setup_timer_api, NULL, NULL, NULL);