zephyr/tests/kernel/context/src/main.c
Andy Ross 39b2a09f38 drivers/timer: New xtensa timer with tickless support
Rewritten Xtensa CCOUNT driver along the lines of all the other new
drivers.  The new API permits much smaller code.

Notably: The Xtensa counter is a 32 bit up-counter with a comparator
register.  It's in some sense the archetype of this kind of timer as
it's the simplest of the bunch (everything else has quirks: NRF is
very slow and 24 bit, HPET has a runtime frequency detection, RISC-V
is 64 bit...).  I should have written this one first.

Note also that this includes a blacklist of the xtensa architecture on
the tests/driver/ipm test.  I'm getting spurious failures there where
a k_sem_take() call with a non-zero timeout is being made out of the
console output code in interrupt context.  This seems to have nothing
to do with the timer; I suspect it's because the old timer drivers
would (incorrectly!) call z_clock_announce() in non-interrupt context
in some contexts (e.g. "expiring really soon").  Apparently this test
(or something in the IPM or Xtensa console code) was somehow relying
on that on Xtensa.  But IPM is a Quark thing and there's no particular
reason to run this test there.

Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2018-11-13 17:10:07 -05:00

934 lines
22 KiB
C

/*
* Copyright (c) 2012-2015 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/*
* @brief test context and thread APIs
*
* @defgroup kernel_context_tests Context Tests
*
* @ingroup all_tests
*
* This module tests the following CPU and thread related routines:
* k_thread_create(), k_yield(), k_is_in_isr(),
* k_current_get(), k_cpu_idle(), k_cpu_atomic_idle(),
* irq_lock(), irq_unlock(),
* irq_offload(), irq_enable(), irq_disable(),
* @{
* @}
*/
#include <ztest.h>
#include <kernel_structs.h>
#include <arch/cpu.h>
#include <irq_offload.h>
#include <sys_clock.h>
/*
* Include soc.h from platform to get IRQ number.
* NOTE: Cortex-M does not need IRQ numbers
*/
#if !defined(CONFIG_CPU_CORTEX_M) && !defined(CONFIG_XTENSA)
#include <soc.h>
#endif
#define THREAD_STACKSIZE (512 + CONFIG_TEST_EXTRA_STACKSIZE)
#define THREAD_STACKSIZE2 (384 + CONFIG_TEST_EXTRA_STACKSIZE)
#define THREAD_PRIORITY 4
#define THREAD_SELF_CMD 0
#define EXEC_CTX_TYPE_CMD 1
#define UNKNOWN_COMMAND -1
/*
* Get the timer type dependent IRQ number. If timer type
* is not defined in platform, generate an error
*/
#if defined(CONFIG_HPET_TIMER)
#define TICK_IRQ CONFIG_HPET_TIMER_IRQ
#elif defined(CONFIG_LOAPIC_TIMER)
#if defined(CONFIG_LOAPIC)
#define TICK_IRQ CONFIG_LOAPIC_TIMER_IRQ
#else
/* MVIC case */
#define TICK_IRQ CONFIG_MVIC_TIMER_IRQ
#endif
#elif defined(CONFIG_XTENSA)
#define TICK_IRQ UTIL_CAT(XCHAL_TIMER, \
UTIL_CAT(CONFIG_XTENSA_TIMER_ID, _INTERRUPT))
#elif defined(CONFIG_ALTERA_AVALON_TIMER)
#define TICK_IRQ TIMER_0_IRQ
#elif defined(CONFIG_ARCV2_TIMER)
#define TICK_IRQ IRQ_TIMER0
#elif defined(CONFIG_PULPINO_TIMER)
#define TICK_IRQ PULP_TIMER_A_CMP_IRQ
#elif defined(CONFIG_RISCV_MACHINE_TIMER)
#define TICK_IRQ RISCV_MACHINE_TIMER_IRQ
#elif defined(CONFIG_CPU_CORTEX_M)
/*
* The Cortex-M use the SYSTICK exception for the system timer, which is
* not considered an IRQ by the irq_enable/Disable APIs.
*/
#elif defined(CONFIG_ARCH_POSIX)
#if defined(CONFIG_BOARD_NATIVE_POSIX)
#define TICK_IRQ TIMER_TICK_IRQ
#else
/*
* Other POSIX arch boards will skip the irq_disable() and irq_enable() test
* unless TICK_IRQ is defined here for them
*/
#endif /* defined(CONFIG_ARCH_POSIX) */
#else
/* generate an error */
#error Timer type is not defined for this platform
#endif
/* Nios II and RISCV32 without CONFIG_RISCV_HAS_CPU_IDLE
* do have a power saving instruction, so k_cpu_idle() returns immediately
*/
#if !defined(CONFIG_NIOS2) && \
(!defined(CONFIG_RISCV32) || defined(CONFIG_RISCV_HAS_CPU_IDLE))
#define HAS_POWERSAVE_INSTRUCTION
#endif
typedef struct {
int command; /* command to process */
int error; /* error value (if any) */
union {
void *data; /* pointer to data to use or return */
int value; /* value to be passed or returned */
};
} ISR_INFO;
typedef int (*disable_int_func) (int);
typedef void (*enable_int_func) (int);
static struct k_sem sem_thread;
static struct k_timer timer;
static struct k_sem reply_timeout;
struct k_fifo timeout_order_fifo;
static int thread_evidence;
static K_THREAD_STACK_DEFINE(thread_stack1, THREAD_STACKSIZE);
static K_THREAD_STACK_DEFINE(thread_stack2, THREAD_STACKSIZE);
static K_THREAD_STACK_DEFINE(thread_stack3, THREAD_STACKSIZE);
static struct k_thread thread_data1;
static struct k_thread thread_data2;
static struct k_thread thread_data3;
static ISR_INFO isr_info;
/**
* @brief Handler to perform various actions from within an ISR context
*
* This routine is the ISR handler for isr_handler_trigger(). It performs
* the command requested in <isr_info.command>.
*
* @return N/A
*/
static void isr_handler(void *data)
{
ARG_UNUSED(data);
switch (isr_info.command) {
case THREAD_SELF_CMD:
isr_info.data = (void *)k_current_get();
break;
case EXEC_CTX_TYPE_CMD:
if (k_is_in_isr()) {
isr_info.value = K_ISR;
break;
}
if (_current->base.prio < 0) {
isr_info.value = K_COOP_THREAD;
break;
}
isr_info.value = K_PREEMPT_THREAD;
break;
default:
isr_info.error = UNKNOWN_COMMAND;
break;
}
}
static void isr_handler_trigger(void)
{
irq_offload(isr_handler, NULL);
}
/**
*
* @brief Initialize kernel objects
*
* This routine initializes the kernel objects used in this module's tests.
*
*/
static void kernel_init_objects(void)
{
k_sem_init(&reply_timeout, 0, UINT_MAX);
k_timer_init(&timer, NULL, NULL);
k_fifo_init(&timeout_order_fifo);
}
/**
* @brief A wrapper for irq_lock()
*
* @return irq_lock() return value
*/
int irq_lock_wrapper(int unused)
{
ARG_UNUSED(unused);
return irq_lock();
}
/**
* @brief A wrapper for irq_unlock()
*
* @return N/A
*/
void irq_unlock_wrapper(int imask)
{
irq_unlock(imask);
}
/**
* @brief A wrapper for irq_disable()
*
* @return @a irq
*/
int irq_disable_wrapper(int irq)
{
irq_disable(irq);
return irq;
}
/**
* @brief A wrapper for irq_enable()
*
* @return N/A
*/
void irq_enable_wrapper(int irq)
{
irq_enable(irq);
}
#if defined(CONFIG_TICKLESS_KERNEL)
static void test_kernel_cpu_idle(void)
{
ztest_test_skip();
}
static void test_kernel_cpu_idle_atomic(void)
{
ztest_test_skip();
}
#elif defined(HAS_POWERSAVE_INSTRUCTION)
static void _test_kernel_cpu_idle(int atomic)
{
int tms, tms2;; /* current time in millisecond */
int i; /* loop variable */
/* Align to a "ms boundary". */
tms = k_uptime_get_32();
while (tms == k_uptime_get_32()) {
#if defined(CONFIG_ARCH_POSIX)
k_busy_wait(50);
#endif
}
tms = k_uptime_get_32();
for (i = 0; i < 5; i++) { /* Repeat the test five times */
if (atomic) {
unsigned int key = irq_lock();
k_cpu_atomic_idle(key);
} else {
k_cpu_idle();
}
/* calculating milliseconds per tick*/
tms += __ticks_to_ms(1);
tms2 = k_uptime_get_32();
zassert_false(tms2 < tms, "Bad ms per tick value computed,"
"got %d which is less than %d\n",
tms2, tms);
}
}
/**
*
* @brief Test the k_cpu_idle() routine
*
* @ingroup kernel_context_tests
*
* This tests the k_cpu_idle() routine. The first thing it does is align to
* a tick boundary. The only source of interrupts while the test is running is
* expected to be the tick clock timer which should wake the CPU. Thus after
* each call to k_cpu_idle(), the tick count should be one higher.
*
* @see k_cpu_idle()
*/
#ifndef CONFIG_ARM
static void test_kernel_cpu_idle_atomic(void)
{
_test_kernel_cpu_idle(1);
}
#else
static void test_kernel_cpu_idle_atomic(void)
{
ztest_test_skip();
}
#endif
static void test_kernel_cpu_idle(void)
{
_test_kernel_cpu_idle(0);
}
#else
static void test_kernel_cpu_idle(void)
{
ztest_test_skip();
}
static void test_kernel_cpu_idle_atomic(void)
{
ztest_test_skip();
}
#endif
static void _test_kernel_interrupts(disable_int_func disable_int,
enable_int_func enable_int, int irq)
{
unsigned long long count = 0;
unsigned long long i = 0;
int tick;
int tick2;
int imask;
/* Align to a "tick boundary" */
tick = z_tick_get_32();
while (z_tick_get_32() == tick) {
#if defined(CONFIG_ARCH_POSIX)
k_busy_wait(1000);
#endif
}
tick++;
while (z_tick_get_32() == tick) {
#if defined(CONFIG_ARCH_POSIX)
k_busy_wait(1000);
#endif
count++;
}
/*
* Inflate <count> so that when we loop later, many ticks should have
* elapsed during the loop. This later loop will not exactly match the
* previous loop, but it should be close enough in structure that when
* combined with the inflated count, many ticks will have passed.
*/
count <<= 4;
imask = disable_int(irq);
tick = z_tick_get_32();
for (i = 0; i < count; i++) {
z_tick_get_32();
#if defined(CONFIG_ARCH_POSIX)
k_busy_wait(1000);
#endif
}
tick2 = z_tick_get_32();
/*
* Re-enable interrupts before returning (for both success and failure
* cases).
*/
enable_int(imask);
/* In TICKLESS, current time is retrieved from a hardware
* counter and ticks DO advance with interrupts locked!
*/
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
zassert_equal(tick2, tick,
"tick advanced with interrupts locked");
}
/* Now repeat with interrupts unlocked. */
for (i = 0; i < count; i++) {
z_tick_get_32();
#if defined(CONFIG_ARCH_POSIX)
k_busy_wait(1000);
#endif
}
tick2 = z_tick_get_32();
zassert_not_equal(tick, tick2,
"tick didn't advance as expected");
}
/**
*
* @brief Test routines for disabling and enabling interrupts
*
* @ingroup kernel_context_tests
*
* This routine tests the routines for disabling and enabling interrupts.
* These include irq_lock() and irq_unlock(), irq_disable() and irq_enable().
*
* @see irq_lock(), irq_unlock(), irq_disable(), irq_enable()
*/
static void test_kernel_interrupts(void)
{
/* IRQ locks don't prevent ticks from advancing in tickless mode */
if (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return;
}
_test_kernel_interrupts(irq_lock_wrapper, irq_unlock_wrapper, -1);
}
/**
*
* @brief Test routines for disabling and enabling interrupts (disable timer)
*
* @ingroup kernel_context_tests
*
* This routine tests the routines for disabling and enabling interrupts.
* These include irq_lock() and irq_unlock(), irq_disable() and irq_enable().
*
* @see irq_lock(), irq_unlock(), irq_disable(), irq_enable()
*/
static void test_kernel_timer_interrupts(void)
{
#ifdef TICK_IRQ
/* Disable interrupts coming from the timer. */
_test_kernel_interrupts(irq_disable_wrapper, irq_enable_wrapper, TICK_IRQ);
#else
ztest_test_skip();
#endif
}
/**
*
* @brief Test some context routines from a preemptible thread
*
* @ingroup kernel_context_tests
*
* This routines tests the k_current_get() and
* k_is_in_isr() routines from both a preemptible thread and an ISR (that
* interrupted a preemptible thread). Checking those routines with cooperative
* threads are done elsewhere.
*
* @see k_current_get(), k_is_in_isr()
*/
static void test_kernel_ctx_thread(void)
{
k_tid_t self_thread_id;
k_thread_priority_set(k_current_get(), 0);
TC_PRINT("Testing k_current_get() from an ISR and thread\n");
self_thread_id = k_current_get();
isr_info.command = THREAD_SELF_CMD;
isr_info.error = 0;
/* isr_info is modified by the isr_handler routine */
isr_handler_trigger();
zassert_false(isr_info.error, "ISR detected an error");
zassert_equal(isr_info.data, (void *)self_thread_id,
"ISR context ID mismatch");
TC_PRINT("Testing k_is_in_isr() from an ISR\n");
isr_info.command = EXEC_CTX_TYPE_CMD;
isr_info.error = 0;
isr_handler_trigger();
zassert_false(isr_info.error, "ISR detected an error");
zassert_equal(isr_info.value, K_ISR,
"isr_info.value was not K_ISR");
TC_PRINT("Testing k_is_in_isr() from a preemptible thread\n");
zassert_false(k_is_in_isr(), "Should not be in ISR context");
zassert_false(_current->base.prio < 0,
"Current thread should have preemptible priority: %d",
_current->base.prio);
}
/**
* @brief Test the various context/thread routines from a cooperative thread
*
* This routines tests the k_current_get() and k_is_in_isr() routines from both
* a thread and an ISR (that interrupted a cooperative thread). Checking those
* routines with preemptible threads are done elsewhere.
*
* @see k_current_get(), k_is_in_isr()
*/
static void _test_kernel_thread(k_tid_t _thread_id)
{
k_tid_t self_thread_id;
self_thread_id = k_current_get();
zassert_true((self_thread_id != _thread_id), "thread id matches parent thread");
isr_info.command = THREAD_SELF_CMD;
isr_info.error = 0;
isr_handler_trigger();
/*
* Either the ISR detected an error, or the ISR context ID
* does not match the interrupted thread's ID.
*/
zassert_false((isr_info.error || (isr_info.data != (void *)self_thread_id)),
"Thread ID taken during ISR != calling thread");
isr_info.command = EXEC_CTX_TYPE_CMD;
isr_info.error = 0;
isr_handler_trigger();
zassert_false((isr_info.error || (isr_info.value != K_ISR)),
"k_is_in_isr() when called from an ISR is false");
zassert_false(k_is_in_isr(), "k_is_in_isr() when called from a thread is true");
zassert_false((_current->base.prio >= 0),
"thread is not a cooperative thread");
}
/**
*
* @brief Entry point to the thread's helper
*
* This routine is the entry point to the thread's helper thread. It is used to
* help test the behavior of the k_yield() routine.
*
* @param arg1 unused
* @param arg2 unused
* @param arg3 unused
*
* @return N/A
*/
static void thread_helper(void *arg1, void *arg2, void *arg3)
{
k_tid_t self_thread_id;
ARG_UNUSED(arg1);
ARG_UNUSED(arg2);
ARG_UNUSED(arg3);
/*
* This thread starts off at a higher priority than thread_entry().
* Thus, it should execute immediately.
*/
thread_evidence++;
/* Test that helper will yield to a thread of equal priority */
self_thread_id = k_current_get();
/* Lower priority to that of thread_entry() */
k_thread_priority_set(self_thread_id, self_thread_id->base.prio + 1);
k_yield(); /* Yield to thread of equal priority */
thread_evidence++;
/* thread_evidence should now be 2 */
}
/**
* @brief Entry point to thread started by another thread
*
* This routine is the entry point to the thread started by the thread.
*/
static void k_yield_entry(void *arg0, void *arg1, void *arg2)
{
k_tid_t self_thread_id;
ARG_UNUSED(arg0);
ARG_UNUSED(arg1);
ARG_UNUSED(arg2);
thread_evidence++; /* Prove that the thread has run */
k_sem_take(&sem_thread, K_FOREVER);
/*
* Start a thread of higher priority. Note that since the new thread is
* being started from a thread, it will not automatically switch to the
* thread as it would if done from another thread.
*/
self_thread_id = k_current_get();
thread_evidence = 0;
k_thread_create(&thread_data2, thread_stack2, THREAD_STACKSIZE,
thread_helper, NULL, NULL, NULL,
K_PRIO_COOP(THREAD_PRIORITY - 1), 0, 0);
zassert_equal(thread_evidence, 0,
"Helper created at higher priority ran prematurely.");
/*
* Test that the thread will yield to the higher priority helper.
* thread_evidence is still 0.
*/
k_yield();
zassert_not_equal(thread_evidence, 0,
"k_yield() did not yield to a higher priority thread: %d",
thread_evidence);
zassert_false((thread_evidence > 1),
"k_yield() did not yield to an equal priority thread: %d",
thread_evidence);
/*
* Raise the priority of thread_entry(). Calling k_yield() should
* not result in switching to the helper.
*/
k_thread_priority_set(self_thread_id, self_thread_id->base.prio - 1);
k_yield();
zassert_equal(thread_evidence, 1,
"k_yield() yielded to a lower priority thread");
/*
* Block on sem_thread. This will allow the helper thread to
* complete. The main thread will wake this thread.
*/
k_sem_take(&sem_thread, K_FOREVER);
}
static void kernel_thread_entry(void *_thread_id, void *arg1, void *arg2)
{
ARG_UNUSED(arg1);
ARG_UNUSED(arg2);
thread_evidence++; /* Prove that the thread has run */
k_sem_take(&sem_thread, K_FOREVER);
_test_kernel_thread((k_tid_t) _thread_id);
}
/*
* @brief Timeout tests
*
* Test the k_sleep() API, as well as the k_thread_create() ones.
*/
struct timeout_order {
void *link_in_fifo;
s32_t timeout;
int timeout_order;
int q_order;
};
struct timeout_order timeouts[] = {
{ 0, 1000, 2, 0 },
{ 0, 1500, 4, 1 },
{ 0, 500, 0, 2 },
{ 0, 750, 1, 3 },
{ 0, 1750, 5, 4 },
{ 0, 2000, 6, 5 },
{ 0, 1250, 3, 6 },
};
#define NUM_TIMEOUT_THREADS ARRAY_SIZE(timeouts)
static K_THREAD_STACK_ARRAY_DEFINE(timeout_stacks, NUM_TIMEOUT_THREADS,
THREAD_STACKSIZE2);
static struct k_thread timeout_threads[NUM_TIMEOUT_THREADS];
/* a thread busy waits */
static void busy_wait_thread(void *mseconds, void *arg2, void *arg3)
{
u32_t usecs;
ARG_UNUSED(arg2);
ARG_UNUSED(arg3);
usecs = (int)mseconds * 1000;
TC_PRINT("Thread busy waiting for %d usecs\n", usecs);
k_busy_wait(usecs);
TC_PRINT("Thread busy waiting completed\n");
/*
* Ideally the test should verify that the correct number of ticks
* have elapsed. However, when running under QEMU, the tick interrupt
* may be processed on a very irregular basis, meaning that far
* fewer than the expected number of ticks may occur for a given
* number of clock cycles vs. what would ordinarily be expected.
*
* Consequently, the best we can do for now to test busy waiting is
* to invoke the API and verify that it returns. (If it takes way
* too long, or never returns, the main test thread may be able to
* time out and report an error.)
*/
k_sem_give(&reply_timeout);
}
/* a thread sleeps and times out, then reports through a fifo */
static void thread_sleep(void *delta, void *arg2, void *arg3)
{
s64_t timestamp;
int timeout = (int)delta;
ARG_UNUSED(arg2);
ARG_UNUSED(arg3);
TC_PRINT(" thread sleeping for %d milliseconds\n", timeout);
timestamp = k_uptime_get();
k_sleep(timeout);
timestamp = k_uptime_get() - timestamp;
TC_PRINT(" thread back from sleep\n");
if (timestamp < timeout || timestamp > timeout + __ticks_to_ms(2)) {
TC_ERROR("timestamp out of range, got %d\n", (int)timestamp);
return;
}
k_sem_give(&reply_timeout);
}
/* a thread is started with a delay, then it reports that it ran via a fifo */
static void delayed_thread(void *num, void *arg2, void *arg3)
{
struct timeout_order *timeout = &timeouts[(int)num];
ARG_UNUSED(arg2);
ARG_UNUSED(arg3);
TC_PRINT(" thread (q order: %d, t/o: %d) is running\n",
timeout->q_order, timeout->timeout);
k_fifo_put(&timeout_order_fifo, timeout);
}
/**
* @brief Test timouts
*
* @ingroup kernel_context_tests
*
* @see k_busy_wait(), k_sleep()
*/
static void test_busy_wait(void)
{
s32_t timeout;
int rv;
timeout = 20; /* in ms */
k_thread_create(&timeout_threads[0], timeout_stacks[0],
THREAD_STACKSIZE2, busy_wait_thread,
(void *)(intptr_t) timeout, NULL,
NULL, K_PRIO_COOP(THREAD_PRIORITY), 0, 0);
rv = k_sem_take(&reply_timeout, timeout * 2);
zassert_false(rv, " *** thread timed out waiting for " "k_busy_wait()");
}
/**
* @brief Test timouts
*
* @ingroup kernel_context_tests
*
* @see k_sleep()
*/
static void test_k_sleep(void)
{
struct timeout_order *data;
s32_t timeout;
int rv;
int i;
timeout = 50;
k_thread_create(&timeout_threads[0], timeout_stacks[0],
THREAD_STACKSIZE2, thread_sleep,
(void *)(intptr_t) timeout, NULL,
NULL, K_PRIO_COOP(THREAD_PRIORITY), 0, 0);
rv = k_sem_take(&reply_timeout, timeout * 2);
zassert_equal(rv, 0, " *** thread timed out waiting for thread on "
"k_sleep().");
/* test k_thread_create() without cancellation */
TC_PRINT("Testing k_thread_create() without cancellation\n");
for (i = 0; i < NUM_TIMEOUT_THREADS; i++) {
k_thread_create(&timeout_threads[i], timeout_stacks[i],
THREAD_STACKSIZE2,
delayed_thread,
(void *)i,
NULL, NULL,
K_PRIO_COOP(5), 0, timeouts[i].timeout);
}
for (i = 0; i < NUM_TIMEOUT_THREADS; i++) {
data = k_fifo_get(&timeout_order_fifo, 750);
zassert_not_null(data, " *** timeout while waiting for"
" delayed thread");
zassert_equal(data->timeout_order, i,
" *** wrong delayed thread ran (got %d, "
"expected %d)\n", data->timeout_order, i);
TC_PRINT(" got thread (q order: %d, t/o: %d) as expected\n",
data->q_order, data->timeout);
}
/* ensure no more thread fire */
data = k_fifo_get(&timeout_order_fifo, 750);
zassert_false(data, " *** got something unexpected in the fifo");
/* test k_thread_create() with cancellation */
TC_PRINT("Testing k_thread_create() with cancellations\n");
int cancellations[] = { 0, 3, 4, 6 };
int num_cancellations = ARRAY_SIZE(cancellations);
int next_cancellation = 0;
k_tid_t delayed_threads[NUM_TIMEOUT_THREADS];
for (i = 0; i < NUM_TIMEOUT_THREADS; i++) {
k_tid_t id;
id = k_thread_create(&timeout_threads[i], timeout_stacks[i],
THREAD_STACKSIZE2, delayed_thread,
(void *)i, NULL, NULL,
K_PRIO_COOP(5), 0, timeouts[i].timeout);
delayed_threads[i] = id;
}
for (i = 0; i < NUM_TIMEOUT_THREADS; i++) {
int j;
if (i == cancellations[next_cancellation]) {
TC_PRINT(" cancelling "
"[q order: %d, t/o: %d, t/o order: %d]\n",
timeouts[i].q_order, timeouts[i].timeout, i);
for (j = 0; j < NUM_TIMEOUT_THREADS; j++) {
if (timeouts[j].timeout_order == i) {
break;
}
}
if (j < NUM_TIMEOUT_THREADS) {
k_thread_abort(delayed_threads[j]);
++next_cancellation;
continue;
}
}
data = k_fifo_get(&timeout_order_fifo, 2750);
zassert_not_null(data, " *** timeout while waiting for"
" delayed thread");
zassert_equal(data->timeout_order, i,
" *** wrong delayed thread ran (got %d, "
"expected %d)\n", data->timeout_order, i);
TC_PRINT(" got (q order: %d, t/o: %d, t/o order %d) "
"as expected\n", data->q_order, data->timeout,
data->timeout_order);
}
zassert_equal(num_cancellations, next_cancellation,
" *** wrong number of cancellations (expected %d, "
"got %d\n", num_cancellations, next_cancellation);
/* ensure no more thread fire */
data = k_fifo_get(&timeout_order_fifo, 750);
zassert_false(data, " *** got something unexpected in the fifo");
}
/**
*
* @brief Test the k_yield() routine
*
* @ingroup kernel_context_tests
*
* Tests the k_yield() routine. It starts another thread
* (thus also testing k_thread_create()) and checks that behavior of
* k_yield() against the a higher priority thread,
* a lower priority thread, and another thread of equal priority.
*
* @see k_yield()
*/
void test_k_yield(void)
{
thread_evidence = 0;
k_thread_priority_set(k_current_get(), 0);
k_sem_init(&sem_thread, 0, UINT_MAX);
k_thread_create(&thread_data1, thread_stack1, THREAD_STACKSIZE,
k_yield_entry, NULL, NULL,
NULL, K_PRIO_COOP(THREAD_PRIORITY), 0, 0);
zassert_equal(thread_evidence, 1,
"Thread did not execute as expected!: %d", thread_evidence);
k_sem_give(&sem_thread);
k_sem_give(&sem_thread);
k_sem_give(&sem_thread);
}
/**
* @brief Test kernel thread creation
*
* @ingroup kernel_context_tests
*
* @see k_thread_create
*/
void test_kernel_thread(void)
{
k_thread_create(&thread_data3, thread_stack3, THREAD_STACKSIZE,
kernel_thread_entry, NULL, NULL,
NULL, K_PRIO_COOP(THREAD_PRIORITY), 0, 0);
}
/*test case main entry*/
void test_main(void)
{
kernel_init_objects();
ztest_test_suite(context,
ztest_unit_test(test_kernel_interrupts),
ztest_unit_test(test_kernel_timer_interrupts),
ztest_unit_test(test_kernel_ctx_thread),
ztest_unit_test(test_busy_wait),
ztest_unit_test(test_k_sleep),
ztest_unit_test(test_kernel_cpu_idle_atomic),
ztest_unit_test(test_kernel_cpu_idle),
ztest_unit_test(test_k_yield),
ztest_unit_test(test_kernel_thread)
);
ztest_run_test_suite(context);
}