zephyr/subsys/bluetooth/controller/hal/ecb.c
Carles Cufi f7d313b154 Bluetooth: Controller: Add ASSERT info dump on HCI builds
When building Zephyr in the controller-only configuration,
assertions that happen in the Link Layer code are not visible
to the Host which is running on another HCI and connected via
UART or USB to it. This patch allows the Controller code
to output the assertion line number when in such a configuration,
allowing the Host to view the event to help debugging.

The event format used is temporary and will be replaced by a
standardized Vendor Specific specification to come at a later
time.

Change-Id: I013ca6783a3fdedc47b171132919dd4798c66285
Signed-off-by: Carles Cufi <carles.cufi@nordicsemi.no>
2016-11-11 07:59:15 +02:00

186 lines
4.2 KiB
C

/*
* Copyright (c) 2016 Nordic Semiconductor ASA
* Copyright (c) 2016 Vinayak Kariappa Chettimada
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string.h>
#include <soc.h>
#include "mem.h"
#include "ecb.h"
#include "debug.h"
void ecb_encrypt(uint8_t const *const key_le,
uint8_t const *const clear_text_le,
uint8_t * const cipher_text_le,
uint8_t * const cipher_text_be)
{
struct {
uint8_t key[16];
uint8_t clear_text[16];
uint8_t cipher_text[16];
} __packed ecb;
mem_rcopy(&ecb.key[0], key_le, sizeof(ecb.key));
mem_rcopy(&ecb.clear_text[0], clear_text_le, sizeof(ecb.clear_text));
do {
NRF_ECB->TASKS_STOPECB = 1;
NRF_ECB->ECBDATAPTR = (uint32_t) &ecb;
NRF_ECB->EVENTS_ENDECB = 0;
NRF_ECB->EVENTS_ERRORECB = 0;
NRF_ECB->TASKS_STARTECB = 1;
while ((NRF_ECB->EVENTS_ENDECB == 0) &&
(NRF_ECB->EVENTS_ERRORECB == 0) &&
(NRF_ECB->ECBDATAPTR != 0)) {
/*__WFE();*/
}
NRF_ECB->TASKS_STOPECB = 1;
} while ((NRF_ECB->EVENTS_ERRORECB != 0) || (NRF_ECB->ECBDATAPTR == 0));
NRF_ECB->ECBDATAPTR = 0;
if (cipher_text_le) {
mem_rcopy(cipher_text_le, &ecb.cipher_text[0],
sizeof(ecb.cipher_text));
}
if (cipher_text_be) {
memcpy(cipher_text_be, &ecb.cipher_text[0],
sizeof(ecb.cipher_text));
}
}
uint32_t ecb_encrypt_nonblocking(struct ecb *ecb)
{
/* prepare to be used in a BE AES h/w */
if (ecb->in_key_le) {
mem_rcopy(&ecb->in_key_be[0], ecb->in_key_le,
sizeof(ecb->in_key_be));
}
if (ecb->in_clear_text_le) {
mem_rcopy(&ecb->in_clear_text_be[0],
ecb->in_clear_text_le,
sizeof(ecb->in_clear_text_be));
}
/* setup the encryption h/w */
NRF_ECB->ECBDATAPTR = (uint32_t)ecb;
NRF_ECB->EVENTS_ENDECB = 0;
NRF_ECB->EVENTS_ERRORECB = 0;
NRF_ECB->INTENSET = ECB_INTENSET_ERRORECB_Msk | ECB_INTENSET_ENDECB_Msk;
/* enable interrupt */
_NvicIrqUnpend(ECB_IRQn);
irq_enable(ECB_IRQn);
/* start the encryption h/w */
NRF_ECB->TASKS_STARTECB = 1;
return 0;
}
static void ecb_cleanup(void)
{
/* stop h/w */
NRF_ECB->TASKS_STOPECB = 1;
/* cleanup interrupt */
irq_disable(ECB_IRQn);
}
void ecb_isr(void)
{
if (NRF_ECB->EVENTS_ERRORECB) {
struct ecb *ecb = (struct ecb *)NRF_ECB->ECBDATAPTR;
ecb_cleanup();
ecb->fp_ecb(1, 0, ecb->context);
}
else if (NRF_ECB->EVENTS_ENDECB) {
struct ecb *ecb = (struct ecb *)NRF_ECB->ECBDATAPTR;
ecb_cleanup();
ecb->fp_ecb(0, &ecb->out_cipher_text_be[0],
ecb->context);
}
else {
LL_ASSERT(0);
}
}
struct ecb_ut_context {
uint32_t volatile done;
uint32_t status;
uint8_t cipher_text[16];
};
static void ecb_cb(uint32_t status, uint8_t *cipher_be, void *context)
{
struct ecb_ut_context *ecb_ut_context =
(struct ecb_ut_context *)context;
ecb_ut_context->done = 1;
ecb_ut_context->status = status;
if (!status) {
mem_rcopy(ecb_ut_context->cipher_text, cipher_be,
sizeof(ecb_ut_context->cipher_text));
}
}
uint32_t ecb_ut(void)
{
uint8_t key[16] = {
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0x00,
0x11, 0x22, 0x33, 0x44, 0x55 };
uint8_t clear_text[16] = {
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0x00,
0x11, 0x22, 0x33, 0x44, 0x55 };
uint8_t cipher_text[16];
uint32_t status = 0;
struct ecb ecb;
struct ecb_ut_context context;
ecb_encrypt(key, clear_text, cipher_text, 0);
context.done = 0;
ecb.in_key_le = key;
ecb.in_clear_text_le = clear_text;
ecb.fp_ecb = ecb_cb;
ecb.context = &context;
status = ecb_encrypt_nonblocking(&ecb);
do {
__WFE();
__SEV();
__WFE();
} while (!context.done);
if (context.status != 0) {
return context.status;
}
status = memcmp(cipher_text, context.cipher_text, sizeof(cipher_text));
if (status) {
return status;
}
return status;
}