zephyr/net/ip/net_core.c
Jukka Rissanen 64662703af net: Network driver for Bluetooth 6LoWPAN connections
This driver handles IPv6 traffic over Bluetooth LE connection.
The packet fragmentation is done inside BT stack, so this
driver only calls compression function.

Change-Id: Ib7f2356a1e88e78502239e54ef6e41f1f24ccd67
Signed-off-by: Jukka Rissanen <jukka.rissanen@linux.intel.com>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
2016-02-05 20:24:59 -05:00

858 lines
20 KiB
C

/** @file
* @brief Network initialization
*
* Initialize the network IP stack. Create two fibers, one for reading data
* from applications (Tx fiber) and one for reading data from IP stack
* and passing that data to applications (Rx fiber).
*/
/*
* Copyright (c) 2015 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define DEBUG DEBUG_PRINT
#include "contiki/ip/uip-debug.h"
#include <nanokernel.h>
#include <toolchain.h>
#include <sections.h>
#include <string.h>
#include <errno.h>
#include <net/ip_buf.h>
#include <net/l2_buf.h>
#include <net/net_core.h>
#include <net/net_ip.h>
#include <net/net_socket.h>
#include "net_driver_15_4.h"
#include "net_driver_slip.h"
#include "net_driver_ethernet.h"
#include "net_driver_bt.h"
#include "contiki/os/sys/process.h"
#include "contiki/os/sys/etimer.h"
#include "contiki/os/sys/ctimer.h"
#include "contiki/netstack.h"
#include "contiki/ipv6/uip-ds6.h"
#include "contiki/ip/simple-udp.h"
#include "contiki/os/dev/slip.h"
#ifdef CONFIG_15_4_BEACON_SUPPORT
#include "contiki/mac/handler-802154.h"
#endif
/* Declare some private functions only to be used in this file so the
* prototypes are not found in .h file.
*/
struct nano_fifo *net_context_get_queue(struct net_context *context);
struct simple_udp_connection *
net_context_get_udp_connection(struct net_context *context);
int net_context_get_receiver_registered(struct net_context *context);
void net_context_set_receiver_registered(struct net_context *context);
/* Stacks for the tx & rx fibers.
* FIXME: stack size needs fine-tuning
*/
#define STACKSIZE_UNIT 1024
static char __noinit rx_fiber_stack[STACKSIZE_UNIT * 1];
static char __noinit tx_fiber_stack[STACKSIZE_UNIT * 1];
static char __noinit timer_fiber_stack[STACKSIZE_UNIT * 3 / 2];
static struct net_dev {
/* Queue for incoming packets from driver */
struct nano_fifo rx_queue;
/* Queue for outgoing packets from apps */
struct nano_fifo tx_queue;
/* Registered network driver */
struct net_driver *drv;
} netdev;
/* Called by application to send a packet */
int net_send(struct net_buf *buf)
{
if (ip_buf_len(buf) == 0) {
return -ENODATA;
}
nano_fifo_put(&netdev.tx_queue, buf);
return 0;
}
#ifdef CONFIG_NETWORKING_STATISTICS
#define STAT(s) uip_stat.s
#define PRINT_STATISTICS_INTERVAL (10 * sys_clock_ticks_per_sec)
#define net_print_statistics stats /* to make the debug print line shorter */
#if NET_MAC_CONF_STATS
#include "mac/mac.h"
#endif
#if RPL_CONF_STATS
#include "rpl/rpl-private.h"
#endif
#if NET_COAP_CONF_STATS
#include "er-coap/er-coap.h"
#endif
#if HANDLER_802154_CONF_STATS
#include "mac/handler-802154.h"
#endif
static void stats(void)
{
static clock_time_t last_print;
/* See contiki/ip/uip.h for descriptions of the different values */
if (clock_time() > (last_print + PRINT_STATISTICS_INTERVAL)) {
#if NET_MAC_CONF_STATS
#define MAC_STAT(s) (net_mac_stats.s)
NET_DBG("L2 bytes recv %d\tsent\t%d\n",
MAC_STAT(bytes_received),
MAC_STAT(bytes_sent));
#endif
NET_DBG("IP recv %d\tsent\t%d\tdrop\t%d\tforwarded\t%d\n",
STAT(ip.recv),
STAT(ip.sent),
STAT(ip.drop),
STAT(ip.forwarded));
NET_DBG("IP vhlerr %d\thblener\t%d\tlblener\t%d\n",
STAT(ip.vhlerr),
STAT(ip.hblenerr),
STAT(ip.lblenerr));
NET_DBG("IP fragerr %d\tchkerr\t%d\tprotoer\t%d\n",
STAT(ip.fragerr),
STAT(ip.chkerr),
STAT(ip.protoerr));
NET_DBG("ICMP recv %d\tsent\t%d\tdrop\t%d\n",
STAT(icmp.recv),
STAT(icmp.sent),
STAT(icmp.drop));
NET_DBG("ICMP typeer %d\tchkerr\t%d\n",
STAT(icmp.typeerr),
STAT(icmp.chkerr));
NET_DBG("UDP recv %d\tsent\t%d\tdrop\t%d\n",
STAT(udp.recv),
STAT(udp.sent),
STAT(udp.drop));
NET_DBG("UDP chkerr %d\n",
STAT(icmp.chkerr));
#if NET_COAP_CONF_STATS
NET_DBG("CoAP recv %d\terr\t%d\tsent\t%d\tre-sent\t%d\n",
NET_COAP_STAT(recv),
NET_COAP_STAT(recv_err),
NET_COAP_STAT(sent),
NET_COAP_STAT(re_sent));
#endif
#if NETSTACK_CONF_WITH_IPV6
NET_DBG("ND recv %d\tsent\t%d\tdrop\t%d\n",
STAT(nd6.recv),
STAT(nd6.sent),
STAT(nd6.drop));
#endif
#if RPL_CONF_STATS
#define RSTAT(s) RPL_STAT(rpl_stats.s)
NET_DBG("RPL overflows %d\tl-repairs\t%d\tg-repairs\t%d\n",
RSTAT(mem_overflows),
RSTAT(local_repairs),
RSTAT(global_repairs));
NET_DBG("RPL malformed %d\tresets \t%d\tp-switch\t%d\n",
RSTAT(malformed_msgs),
RSTAT(resets),
RSTAT(parent_switch));
NET_DBG("RPL f-errors %d\tl-errors\t%d\tl-warnings\t%d\n",
RSTAT(forward_errors),
RSTAT(loop_errors),
RSTAT(loop_warnings));
NET_DBG("RPL r-repairs %d\n",
RSTAT(root_repairs));
#endif
#if HANDLER_802154_CONF_STATS
#define IEEE802154_STAT(s) (handler_802154_stats.s)
NET_DBG("802.15.4 beacons recv\t%d\tsent\t%d\treqs sent\t%d\n",
IEEE802154_STAT(beacons_received),
IEEE802154_STAT(beacons_sent),
IEEE802154_STAT(beacons_reqs_sent));
#endif
last_print = clock_time();
}
}
#else
#define net_print_statistics()
#endif
/* Switch the ports and addresses and set route and neighbor cache.
* Returns 1 if packet was sent properly, in this case it is the caller
* that needs to release the net_buf. If 0 is returned, then uIP stack
* has released the net_buf already because there was an some net related
* error when sending the buffer.
*/
static inline int udp_prepare_and_send(struct net_context *context,
struct net_buf *buf)
{
#ifdef CONFIG_NETWORKING_IPV6_NO_ND
uip_ds6_route_t *route_old, *route_new = NULL;
uip_ds6_nbr_t *nbr;
#endif
uip_ipaddr_t tmp;
uint16_t port;
uint8_t ret;
if (uip_len(buf) == 0) {
/* This is expected as uIP will typically set the
* packet length to 0 after receiving it. So we need
* to fix the length here. The protocol specific
* part is added also here.
*/
uip_len(buf) = ip_buf_len(buf);
}
ip_buf_appdata(buf) = &uip_buf(buf)[UIP_IPUDPH_LEN];
port = NET_BUF_UDP(buf)->srcport;
NET_BUF_UDP(buf)->srcport = NET_BUF_UDP(buf)->destport;
NET_BUF_UDP(buf)->destport = port;
uip_ipaddr_copy(&tmp, &NET_BUF_IP(buf)->srcipaddr);
uip_ipaddr_copy(&NET_BUF_IP(buf)->srcipaddr,
&NET_BUF_IP(buf)->destipaddr);
uip_ipaddr_copy(&NET_BUF_IP(buf)->destipaddr, &tmp);
#ifdef CONFIG_NETWORKING_IPV6_NO_ND
/* The peer needs to be in neighbor cache before route can be added.
*/
nbr = uip_ds6_nbr_lookup((uip_ipaddr_t *)&NET_BUF_IP(buf)->destipaddr);
if (!nbr) {
const uip_lladdr_t *lladdr =
(const uip_lladdr_t *)&ip_buf_ll_src(buf);
nbr = uip_ds6_nbr_add(
(uip_ipaddr_t *)&NET_BUF_IP(buf)->destipaddr,
lladdr, 0, NBR_REACHABLE);
if (!nbr) {
NET_DBG("Cannot add peer ");
PRINT6ADDR(&NET_BUF_IP(buf)->destipaddr);
PRINT(" to neighbor cache\n");
}
}
/* Temporarily add route to peer, delete the route after
* sending the packet. Check if there was already a
* route and do not remove it if there was existing
* route to this peer.
*/
route_old = uip_ds6_route_lookup(&NET_BUF_IP(buf)->destipaddr);
if (!route_old) {
route_new = uip_ds6_route_add(&NET_BUF_IP(buf)->destipaddr,
128,
&NET_BUF_IP(buf)->destipaddr);
if (!route_new) {
NET_DBG("Cannot add route to peer ");
PRINT6ADDR(&NET_BUF_IP(buf)->destipaddr);
PRINT("\n");
}
}
#endif
ret = simple_udp_sendto_port(buf,
net_context_get_udp_connection(context),
ip_buf_appdata(buf),
ip_buf_appdatalen(buf),
&NET_BUF_IP(buf)->destipaddr,
uip_ntohs(NET_BUF_UDP(buf)->destport));
if (!ret) {
NET_DBG("Packet could not be sent properly.\n");
}
#ifdef CONFIG_NETWORKING_IPV6_NO_ND
if (!route_old && route_new) {
/* This will also remove the neighbor cache entry */
uip_ds6_route_rm(route_new);
}
#endif
return !ret;
}
/* Application wants to send a reply */
int net_reply(struct net_context *context, struct net_buf *buf)
{
struct net_tuple *tuple;
struct uip_udp_conn *udp;
int ret = 0;
if (!context || !buf) {
return -EINVAL;
}
tuple = net_context_get_tuple(context);
if (!tuple) {
return -ENOENT;
}
switch (tuple->ip_proto) {
case IPPROTO_UDP:
udp = uip_udp_conn(buf);
if (!udp) {
NET_ERR("UDP connection missing\n");
return -ESRCH;
}
ret = udp_prepare_and_send(context, buf);
break;
case IPPROTO_TCP:
NET_DBG("TCP not yet supported\n");
return -EINVAL;
case IPPROTO_ICMPV6:
NET_DBG("ICMPv6 not yet supported\n");
return -EINVAL;
}
return ret;
}
/* Called by driver when an IP packet has been received */
int net_recv(struct net_buf *buf)
{
if (ip_buf_len(buf) == 0) {
return -ENODATA;
}
nano_fifo_put(&netdev.rx_queue, buf);
return 0;
}
static void udp_packet_receive(struct simple_udp_connection *c,
const uip_ipaddr_t *source_addr,
uint16_t source_port,
const uip_ipaddr_t *dest_addr,
uint16_t dest_port,
const uint8_t *data, uint16_t datalen,
void *user_data,
struct net_buf *buf)
{
struct net_context *context = user_data;
if (!context) {
/* If the context is not there, then we must discard
* the buffer here, otherwise we have a buffer leak.
*/
ip_buf_unref(buf);
return;
}
ip_buf_appdatalen(buf) = datalen;
ip_buf_appdata(buf) = &uip_buf(buf)[UIP_IPUDPH_LEN];
NET_DBG("packet received context %p len %d "
"appdata %p appdatalen %d\n",
context, ip_buf_len(buf),
ip_buf_appdata(buf), ip_buf_appdatalen(buf));
nano_fifo_put(net_context_get_queue(context), buf);
}
#ifdef CONFIG_NANO_TIMEOUTS
static inline struct net_buf *buf_wait_timeout(struct nano_fifo *queue,
int32_t timeout)
{
switch (sys_execution_context_type_get()) {
case NANO_CTX_FIBER:
return nano_fiber_fifo_get_wait_timeout(queue, timeout);
case NANO_CTX_TASK:
return nano_task_fifo_get_wait_timeout(queue, timeout);
case NANO_CTX_ISR:
default:
/* Invalid context type */
break;
}
return NULL;
}
#endif
/* Called by application when it wants to receive network data */
struct net_buf *net_receive(struct net_context *context, int32_t timeout)
{
struct nano_fifo *rx_queue = net_context_get_queue(context);
struct net_buf *buf;
struct net_tuple *tuple;
int ret = 0;
uint16_t reserve = 0;
tuple = net_context_get_tuple(context);
if (!tuple) {
return NULL;
}
switch (tuple->ip_proto) {
case IPPROTO_UDP:
if (!net_context_get_receiver_registered(context)) {
struct simple_udp_connection *udp =
net_context_get_udp_connection(context);
ret = simple_udp_register(udp, tuple->local_port,
#ifdef CONFIG_NETWORKING_WITH_IPV6
(uip_ip6addr_t *)&tuple->remote_addr->in6_addr,
#else
(uip_ip4addr_t *)&tuple->remote_addr->in_addr,
#endif
tuple->remote_port,
udp_packet_receive,
context);
if (!ret) {
NET_DBG("UDP connection listener failed\n");
ret = -ENOENT;
break;
}
}
net_context_set_receiver_registered(context);
ret = 0;
reserve = UIP_IPUDPH_LEN;
break;
case IPPROTO_TCP:
NET_DBG("TCP not yet supported\n");
ret = -EINVAL;
break;
case IPPROTO_ICMPV6:
NET_DBG("ICMPv6 not yet supported\n");
ret = -EINVAL;
break;
default:
NET_ERR("Invalid IP protocol. "
"Internal data structure corrupted!\n");
ret = -EINVAL;
break;
}
if (ret) {
return NULL;
}
switch (timeout) {
case TICKS_UNLIMITED:
buf = nano_fifo_get_wait(rx_queue);
break;
case TICKS_NONE:
buf = nano_fifo_get(rx_queue);
break;
default:
#ifdef CONFIG_NANO_TIMEOUTS
buf = buf_wait_timeout(rx_queue, timeout);
#else /* CONFIG_NANO_TIMEOUTS */
buf = nano_fifo_get(rx_queue);
#endif
break;
}
if (buf && reserve) {
ip_buf_appdatalen(buf) = ip_buf_len(buf) - reserve;
ip_buf_appdata(buf) = &uip_buf(buf)[reserve];
}
return buf;
}
static void udp_packet_reply(struct simple_udp_connection *c,
const uip_ipaddr_t *source_addr,
uint16_t source_port,
const uip_ipaddr_t *dest_addr,
uint16_t dest_port,
const uint8_t *data, uint16_t datalen,
void *user_data,
struct net_buf *buf)
{
struct net_context *context = user_data;
struct nano_fifo *queue;
if (!context) {
/* If the context is not there, then we must discard
* the buffer here, otherwise we have a buffer leak.
*/
ip_buf_unref(buf);
return;
}
queue = net_context_get_queue(context);
/* Contiki stack will overwrite the uip_len(buf) and
* uip_appdatalen(buf) values, so in order to allow
* the application to use them, copy the values here.
*/
ip_buf_appdatalen(buf) = datalen;
NET_DBG("packet reply context %p len %d "
"appdata %p appdatalen %d queue %p\n",
context, ip_buf_len(buf),
ip_buf_appdata(buf), ip_buf_appdatalen(buf), queue);
nano_fifo_put(queue, buf);
}
/* Internal function to send network data to uIP stack */
static int check_and_send_packet(struct net_buf *buf)
{
struct net_tuple *tuple;
struct simple_udp_connection *udp;
int ret = 0;
if (!netdev.drv) {
return -EINVAL;
}
tuple = net_context_get_tuple(ip_buf_context(buf));
if (!tuple) {
return -EINVAL;
}
switch (tuple->ip_proto) {
case IPPROTO_UDP:
udp = net_context_get_udp_connection(ip_buf_context(buf));
if (!net_context_get_receiver_registered(ip_buf_context(buf))) {
ret = simple_udp_register(udp, tuple->local_port,
#ifdef CONFIG_NETWORKING_WITH_IPV6
(uip_ip6addr_t *)&tuple->remote_addr->in6_addr,
#else
(uip_ip4addr_t *)&tuple->remote_addr->in_addr,
#endif
tuple->remote_port, udp_packet_reply,
ip_buf_context(buf));
if (!ret) {
NET_DBG("UDP connection creation failed\n");
ret = -ENOENT;
break;
}
net_context_set_receiver_registered(ip_buf_context(buf));
}
if (ip_buf_appdatalen(buf) == 0) {
/* User application has not set the application data
* length. The buffer will be discarded if we do not
* set the value correctly.
*/
uip_appdatalen(buf) = buf->len - UIP_IPUDPH_LEN;
}
ret = simple_udp_send(buf, udp, uip_appdata(buf),
uip_appdatalen(buf));
break;
case IPPROTO_TCP:
NET_DBG("TCP not yet supported\n");
ret = -EINVAL;
break;
case IPPROTO_ICMPV6:
NET_DBG("ICMPv6 not yet supported\n");
ret = -EINVAL;
break;
}
return ret;
}
static void net_tx_fiber(void)
{
NET_DBG("Starting TX fiber\n");
while (1) {
struct net_buf *buf;
int ret;
/* Get next packet from application - wait if necessary */
buf = nano_fifo_get_wait(&netdev.tx_queue);
NET_DBG("Sending (buf %p, len %u) to IP stack\n",
buf, buf->len);
/* What to do with the buffer:
* <0: error, release the buffer
* 0: message was discarded by uIP, release the buffer here
* >0: message was sent ok, buffer released already
*/
ret = check_and_send_packet(buf);
if (ret < 0) {
ip_buf_unref(buf);
goto wait_next;
} else if (ret > 0) {
goto wait_next;
}
NET_BUF_CHECK_IF_NOT_IN_USE(buf);
/* Check for any events that we might need to process */
do {
ret = process_run(buf);
} while (ret > 0);
ip_buf_unref(buf);
wait_next:
/* Check stack usage (no-op if not enabled) */
net_analyze_stack("TX fiber", tx_fiber_stack,
sizeof(tx_fiber_stack));
net_print_statistics();
}
}
static void net_rx_fiber(void)
{
struct net_buf *buf;
NET_DBG("Starting RX fiber\n");
while (1) {
buf = nano_fifo_get_wait(&netdev.rx_queue);
/* Check stack usage (no-op if not enabled) */
net_analyze_stack("RX fiber", rx_fiber_stack,
sizeof(rx_fiber_stack));
NET_DBG("Received buf %p\n", buf);
if (!tcpip_input(buf)) {
ip_buf_unref(buf);
}
/* The buffer is on to its way to receiver at this
* point. We must not remove it here.
*/
net_print_statistics();
}
}
/*
* Run various Contiki timers. At the moment this is done via polling.
*/
#define DEFAULT_TIMER_WAKEUP 2
#define MAX_TIMER_WAKEUP 2
static void net_timer_fiber(void)
{
clock_time_t next_wakeup;
NET_DBG("Starting net timer fiber\n");
while (1) {
/* Run various timers */
next_wakeup = etimer_request_poll();
if (next_wakeup == 0) {
/* There was no timers, wait a bit */
next_wakeup = DEFAULT_TIMER_WAKEUP;
} else {
if (next_wakeup > MAX_TIMER_WAKEUP) {
next_wakeup = MAX_TIMER_WAKEUP;
}
#ifdef CONFIG_INIT_STACKS
{
static clock_time_t last_print;
/* Print stack usage every 10 sec */
if (!last_print ||
(last_print +
10 * sys_clock_hw_cycles_per_tick) <
clock_get_cycle()) {
net_analyze_stack("timer fiber",
timer_fiber_stack,
sizeof(timer_fiber_stack));
last_print = clock_get_cycle() + 1;
}
}
#endif
}
fiber_sleep(next_wakeup);
}
}
static void init_rx_queue(void)
{
nano_fifo_init(&netdev.rx_queue);
fiber_start(rx_fiber_stack, sizeof(rx_fiber_stack),
(nano_fiber_entry_t)net_rx_fiber, 0, 0, 7, 0);
}
static void init_tx_queue(void)
{
nano_fifo_init(&netdev.tx_queue);
fiber_start(tx_fiber_stack, sizeof(tx_fiber_stack),
(nano_fiber_entry_t)net_tx_fiber, 0, 0, 7, 0);
}
static void init_timer_fiber(void)
{
fiber_start(timer_fiber_stack, sizeof(timer_fiber_stack),
(nano_fiber_entry_t)net_timer_fiber, 0, 0, 7, 0);
}
int net_set_mac(uint8_t *mac, uint8_t len)
{
if ((len > UIP_LLADDR_LEN) || (len != 6 && len != 8)) {
NET_ERR("Wrong ll addr len, len %d, max %d\n",
len, UIP_LLADDR_LEN);
return -EINVAL;
}
linkaddr_set_node_addr((linkaddr_t *)mac);
NET_DBG("MAC "); PRINTLLADDR((uip_lladdr_t *)&linkaddr_node_addr); PRINTF("\n");
#ifdef CONFIG_NETWORKING_WITH_IPV6
{
uip_ds6_addr_t *lladdr;
uip_ds6_set_lladdr((uip_lladdr_t *)mac);
lladdr = uip_ds6_get_link_local(-1);
NET_DBG("Tentative link-local IPv6 address ");
PRINT6ADDR(&lladdr->ipaddr);
PRINTF("\n");
lladdr->state = ADDR_AUTOCONF;
}
#else
memcpy(&uip_lladdr, mac, len);
#endif
return 0;
}
static uint8_t net_tcpip_output(struct net_buf *buf, const uip_lladdr_t *lladdr)
{
int res;
if (!netdev.drv) {
return 0;
}
if (lladdr) {
linkaddr_copy(&ip_buf_ll_dest(buf),
(const linkaddr_t *)lladdr);
} else {
linkaddr_copy(&ip_buf_ll_dest(buf), &linkaddr_null);
}
if (ip_buf_len(buf) == 0) {
return 0;
}
res = netdev.drv->send(buf);
if (res < 0) {
res = 0;
}
return (uint8_t)res;
}
static int network_initialization(void)
{
/* Initialize and start Contiki uIP stack */
clock_init();
rtimer_init();
ctimer_init();
process_init();
tcpip_set_outputfunc(net_tcpip_output);
process_start(&tcpip_process, NULL);
process_start(&simple_udp_process, NULL);
process_start(&etimer_process, NULL);
process_start(&ctimer_process, NULL);
slip_start();
#if CONFIG_15_4_BEACON_SUPPORT && CONFIG_NETWORKING_WITH_15_4_PAN_ID
handler_802154_join(CONFIG_NETWORKING_WITH_15_4_PAN_ID, 1);
#endif
return 0;
}
int net_register_driver(struct net_driver *drv)
{
int r;
if (netdev.drv) {
return -EALREADY;
}
if (!drv->open || !drv->send) {
return -EINVAL;
}
r = drv->open();
if (r < 0) {
return r;
}
netdev.drv = drv;
return 0;
}
void net_unregister_driver(struct net_driver *drv)
{
netdev.drv = NULL;
}
int net_init(void)
{
static uint8_t initialized;
if (initialized)
return -EALREADY;
initialized = 1;
#if UIP_STATISTICS == 1
memset(&uip_stat, 0, sizeof(uip_stat));
#endif /* UIP_STATISTICS == 1 */
net_context_init();
ip_buf_init();
l2_buf_init();
init_tx_queue();
init_rx_queue();
init_timer_fiber();
#if defined(CONFIG_NETWORKING_WITH_15_4)
net_driver_15_4_init();
#endif
#if defined(CONFIG_NETWORKING_WITH_BT)
net_driver_bt_init();
#endif
net_driver_slip_init();
net_driver_ethernet_init();
return network_initialization();
}