zephyr/samples/subsys/tracing/src/main.c
Gerard Marull-Paretas 79e6b0e0f6 includes: prefer <zephyr/kernel.h> over <zephyr/zephyr.h>
As of today <zephyr/zephyr.h> is 100% equivalent to <zephyr/kernel.h>.
This patch proposes to then include <zephyr/kernel.h> instead of
<zephyr/zephyr.h> since it is more clear that you are including the
Kernel APIs and (probably) nothing else. <zephyr/zephyr.h> sounds like a
catch-all header that may be confusing. Most applications need to
include a bunch of other things to compile, e.g. driver headers or
subsystem headers like BT, logging, etc.

The idea of a catch-all header in Zephyr is probably not feasible
anyway. Reason is that Zephyr is not a library, like it could be for
example `libpython`. Zephyr provides many utilities nowadays: a kernel,
drivers, subsystems, etc and things will likely grow. A catch-all header
would be massive, difficult to keep up-to-date. It is also likely that
an application will only build a small subset. Note that subsystem-level
headers may use a catch-all approach to make things easier, though.

NOTE: This patch is **NOT** removing the header, just removing its usage
in-tree. I'd advocate for its deprecation (add a #warning on it), but I
understand many people will have concerns.

Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
2022-09-05 16:31:47 +02:00

113 lines
2.7 KiB
C

/*
* Copyright (c) 2019 Intel Corporation
* Copyright (c) 2012-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/sys/printk.h>
#include <zephyr/logging/log.h>
#include <zephyr/usb/usb_device.h>
/*
* The hello world demo has two threads that utilize semaphores and sleeping
* to take turns printing a greeting message at a controlled rate. The demo
* shows both the static and dynamic approaches for spawning a thread; a real
* world application would likely use the static approach for both threads.
*/
/* size of stack area used by each thread */
#define STACKSIZE (2048)
/* scheduling priority used by each thread */
#define PRIORITY 7
/* delay between greetings (in ms) */
#define SLEEPTIME 500
/*
* @param my_name thread identification string
* @param my_sem thread's own semaphore
* @param other_sem other thread's semaphore
*/
void helloLoop(const char *my_name,
struct k_sem *my_sem, struct k_sem *other_sem)
{
const char *tname;
while (1) {
/* take my semaphore */
k_sem_take(my_sem, K_FOREVER);
/* say "hello" */
tname = k_thread_name_get(k_current_get());
if (tname == NULL) {
printk("%s: Hello World from %s!\n",
my_name, CONFIG_BOARD);
} else {
printk("%s: Hello World from %s!\n",
tname, CONFIG_BOARD);
}
/* wait a while, then let other thread have a turn */
k_msleep(SLEEPTIME);
k_sem_give(other_sem);
}
}
/* define semaphores */
K_SEM_DEFINE(threadA_sem, 1, 1); /* starts off "available" */
K_SEM_DEFINE(threadB_sem, 0, 1); /* starts off "not available" */
/* threadB is a dynamic thread that is spawned by threadA */
void threadB(void *dummy1, void *dummy2, void *dummy3)
{
ARG_UNUSED(dummy1);
ARG_UNUSED(dummy2);
ARG_UNUSED(dummy3);
/* invoke routine to ping-pong hello messages with threadA */
helloLoop(__func__, &threadB_sem, &threadA_sem);
}
K_THREAD_STACK_DEFINE(threadB_stack_area, STACKSIZE);
static struct k_thread threadB_data;
/* threadA is a static thread that is spawned automatically */
void threadA(void *dummy1, void *dummy2, void *dummy3)
{
ARG_UNUSED(dummy1);
ARG_UNUSED(dummy2);
ARG_UNUSED(dummy3);
#if defined(CONFIG_USB_DEVICE_STACK)
int ret;
ret = usb_enable(NULL);
if (ret) {
printk("usb backend enable failed");
return;
}
#endif /* CONFIG_USB_DEVICE_STACK */
/* spawn threadB */
k_tid_t tid = k_thread_create(&threadB_data, threadB_stack_area,
STACKSIZE, threadB, NULL, NULL, NULL,
PRIORITY, 0, K_NO_WAIT);
k_thread_name_set(tid, "thread_b");
/* invoke routine to ping-pong hello messages with threadB */
helloLoop(__func__, &threadA_sem, &threadB_sem);
}
K_THREAD_DEFINE(thread_a, STACKSIZE, threadA, NULL, NULL, NULL,
PRIORITY, 0, 0);