Namespaced the generated headers with `zephyr` to prevent potential conflict with other headers. Introduce a temporary Kconfig `LEGACY_GENERATED_INCLUDE_PATH` that is enabled by default. This allows the developers to continue the use of the old include paths for the time being until it is deprecated and eventually removed. The Kconfig will generate a build-time warning message, similar to the `CONFIG_TIMER_RANDOM_GENERATOR`. Updated the includes path of in-tree sources accordingly. Most of the changes here are scripted, check the PR for more info. Signed-off-by: Yong Cong Sin <ycsin@meta.com>
545 lines
16 KiB
C
545 lines
16 KiB
C
/*
|
|
* Copyright (c) 2020 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/ztest.h>
|
|
#include <zephyr/internal/syscall_handler.h>
|
|
#include <kernel_internal.h>
|
|
|
|
#include "test_syscall.h"
|
|
|
|
/*
|
|
* Stack testing
|
|
*/
|
|
struct k_thread test_thread;
|
|
#define NUM_STACKS 3
|
|
#define STEST_STACKSIZE (512 + CONFIG_TEST_EXTRA_STACK_SIZE)
|
|
K_THREAD_STACK_DEFINE(user_stack, STEST_STACKSIZE);
|
|
K_THREAD_STACK_ARRAY_DEFINE(user_stack_array, NUM_STACKS, STEST_STACKSIZE);
|
|
K_KERNEL_STACK_DEFINE(kern_stack, STEST_STACKSIZE);
|
|
K_KERNEL_STACK_ARRAY_DEFINE(kern_stack_array, NUM_STACKS, STEST_STACKSIZE);
|
|
|
|
struct foo {
|
|
int bar;
|
|
|
|
K_KERNEL_STACK_MEMBER(stack, STEST_STACKSIZE);
|
|
int baz;
|
|
};
|
|
|
|
__kstackmem struct foo stest_member_stack;
|
|
|
|
void z_impl_stack_info_get(char **start_addr, size_t *size)
|
|
{
|
|
*start_addr = (char *)k_current_get()->stack_info.start;
|
|
*size = k_current_get()->stack_info.size;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_stack_info_get(char **start_addr,
|
|
size_t *size)
|
|
{
|
|
K_OOPS(K_SYSCALL_MEMORY_WRITE(start_addr, sizeof(uintptr_t)));
|
|
K_OOPS(K_SYSCALL_MEMORY_WRITE(size, sizeof(size_t)));
|
|
|
|
z_impl_stack_info_get(start_addr, size);
|
|
}
|
|
#include <zephyr/syscalls/stack_info_get_mrsh.c>
|
|
|
|
int z_impl_check_perms(void *addr, size_t size, int write)
|
|
{
|
|
return arch_buffer_validate(addr, size, write);
|
|
}
|
|
|
|
static inline int z_vrfy_check_perms(void *addr, size_t size, int write)
|
|
{
|
|
return z_impl_check_perms((void *)addr, size, write);
|
|
}
|
|
#include <zephyr/syscalls/check_perms_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
/* Global data structure with object information, used by
|
|
* stack_buffer_scenarios
|
|
*/
|
|
ZTEST_BMEM struct scenario_data {
|
|
k_thread_stack_t *stack;
|
|
|
|
#ifdef CONFIG_THREAD_STACK_MEM_MAPPED
|
|
k_thread_stack_t *stack_mapped;
|
|
#endif
|
|
|
|
/* If this was declared with K_THREAD_STACK_DEFINE and not
|
|
* K_KERNEL_STACK_DEFINE
|
|
*/
|
|
bool is_user;
|
|
|
|
/* Stack size stored in kernel object metadata if a user stack */
|
|
size_t metadata_size;
|
|
|
|
/* Return value of sizeof(stack) */
|
|
size_t object_size;
|
|
|
|
/* Return value of K_{THREAD|KERNEL}_STACK_SIZEOF(stack) */
|
|
size_t reported_size;
|
|
|
|
/* Original size argument passed to K_{THREAD|KERNEL}_STACK_DECLARE */
|
|
size_t declared_size;
|
|
|
|
/* Whether this stack is part of an array of thread stacks */
|
|
bool is_array;
|
|
} scenario_data;
|
|
|
|
void stack_buffer_scenarios(void)
|
|
{
|
|
k_thread_stack_t *stack_obj;
|
|
size_t obj_size = scenario_data.object_size;
|
|
size_t stack_size, unused, carveout, reserved, alignment, adjusted;
|
|
uint8_t val = 0;
|
|
char *stack_start, *stack_ptr, *stack_end, *obj_start, *obj_end;
|
|
char *stack_buf;
|
|
volatile char *pos;
|
|
int ret, expected;
|
|
uintptr_t base;
|
|
bool is_usermode;
|
|
long int end_space;
|
|
|
|
#ifdef CONFIG_THREAD_STACK_MEM_MAPPED
|
|
stack_obj = scenario_data.stack_mapped;
|
|
#else
|
|
stack_obj = scenario_data.stack;
|
|
#endif
|
|
|
|
base = (uintptr_t)stack_obj;
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
is_usermode = arch_is_user_context();
|
|
#else
|
|
is_usermode = false;
|
|
#endif
|
|
/* Dump interesting information */
|
|
stack_info_get(&stack_start, &stack_size);
|
|
printk(" - Thread reports buffer %p size %zu\n", stack_start,
|
|
stack_size);
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
if (scenario_data.is_user) {
|
|
reserved = K_THREAD_STACK_RESERVED;
|
|
stack_buf = K_THREAD_STACK_BUFFER(stack_obj);
|
|
/* always use the original size here */
|
|
alignment = Z_THREAD_STACK_OBJ_ALIGN(STEST_STACKSIZE);
|
|
} else
|
|
#endif
|
|
{
|
|
reserved = K_KERNEL_STACK_RESERVED;
|
|
stack_buf = K_KERNEL_STACK_BUFFER(stack_obj);
|
|
alignment = Z_KERNEL_STACK_OBJ_ALIGN;
|
|
}
|
|
|
|
stack_end = stack_start + stack_size;
|
|
obj_end = (char *)stack_obj + obj_size;
|
|
obj_start = (char *)stack_obj;
|
|
|
|
|
|
|
|
/* Assert that the created stack object, with the reserved data
|
|
* removed, can hold a thread buffer of STEST_STACKSIZE
|
|
*/
|
|
zassert_true(STEST_STACKSIZE <= (obj_size - reserved),
|
|
"bad stack size in object");
|
|
|
|
/* Check that the stack info in the thread marks a region
|
|
* completely contained within the stack object
|
|
*/
|
|
zassert_true(stack_end <= obj_end,
|
|
"stack size in thread struct out of bounds (overflow)");
|
|
zassert_true(stack_start >= obj_start,
|
|
"stack size in thread struct out of bounds (underflow)");
|
|
|
|
/* Check that the base of the stack is aligned properly. */
|
|
zassert_true(base % alignment == 0,
|
|
"stack base address %p not aligned to %zu",
|
|
stack_obj, alignment);
|
|
|
|
/* Check that the entire stack buffer is read/writable */
|
|
printk(" - check read/write to stack buffer\n");
|
|
|
|
/* Address of this stack variable is guaranteed to part of
|
|
* the active stack, and close to the actual stack pointer.
|
|
* Some CPUs have hardware stack overflow detection which
|
|
* faults on memory access within the stack buffer but below
|
|
* the stack pointer.
|
|
*
|
|
* First test does direct read & write starting at the estimated
|
|
* stack pointer up to the highest addresses in the buffer
|
|
* Starting from &val which is close enough to stack pointer
|
|
*/
|
|
stack_ptr = &val;
|
|
for (pos = stack_ptr; pos < stack_end; pos++) {
|
|
/* pos is volatile so this doesn't get optimized out */
|
|
val = *pos;
|
|
*pos = val;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
if (is_usermode) {
|
|
/* If we're in user mode, check every byte in the stack buffer
|
|
* to ensure that the thread has permissions on it.
|
|
*/
|
|
for (pos = stack_start; pos < stack_end; pos++) {
|
|
zassert_false(check_perms((void *)pos, 1, 1),
|
|
"bad MPU/MMU permission on stack buffer at address %p",
|
|
pos);
|
|
}
|
|
|
|
/* Bounds check the user accessible area, it shouldn't extend
|
|
* before or after the stack. Because of memory protection HW
|
|
* alignment constraints, we test the end of the stack object
|
|
* and not the buffer.
|
|
*/
|
|
zassert_true(check_perms(stack_start - 1, 1, 0),
|
|
"user mode access to memory %p before start of stack object",
|
|
obj_start - 1);
|
|
zassert_true(check_perms(stack_end, 1, 0),
|
|
"user mode access to memory %p past end of stack object",
|
|
obj_end);
|
|
|
|
/*
|
|
* The reserved area, when it exists, is dropped at run time
|
|
* when transitioning to user mode on RISC-V. Reinstate that
|
|
* reserved area here for the next tests to work properly
|
|
* with a static non-zero K_THREAD_STACK_RESERVED definition.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_RISCV) &&
|
|
IS_ENABLED(CONFIG_GEN_PRIV_STACKS) &&
|
|
K_THREAD_STACK_RESERVED != 0) {
|
|
stack_start += reserved;
|
|
stack_size -= reserved;
|
|
}
|
|
|
|
zassert_true(stack_size <= obj_size - reserved,
|
|
"bad stack size %zu in thread struct",
|
|
stack_size);
|
|
}
|
|
#endif
|
|
|
|
carveout = stack_start - stack_buf;
|
|
printk(" - Carved-out space in buffer: %zu\n", carveout);
|
|
|
|
zassert_true(carveout < stack_size,
|
|
"Suspicious carve-out space reported");
|
|
/* 0 unless this is a stack array */
|
|
end_space = obj_end - stack_end;
|
|
printk(" - Unused objects space: %ld\n", end_space);
|
|
|
|
/* For all stacks, when k_thread_create() is called with a stack object,
|
|
* it is equivalent to pass either the original requested stack size, or
|
|
* the return value of K_*_STACK_SIZEOF() for that stack object.
|
|
*
|
|
* When the stack is actually instantiated, both expand to fill any space
|
|
* rounded up, except rounding space for array members.
|
|
*/
|
|
if (!scenario_data.is_array) {
|
|
/* These should be exactly the same. We have an equivalence relation:
|
|
* For some stack declared with:
|
|
*
|
|
* K_THREAD_STACK_DEFINE(my_stack, X);
|
|
* K_THREAD_STACK_LEN(X) - K_THREAD_STACK_RESERVED ==
|
|
* K_THREAD_STACK_SIZEOF(my_stack)
|
|
*
|
|
* K_KERNEL_STACK_DEFINE(my_kern_stack, Y):
|
|
* K_KERNEL_STACK_LEN(Y) - K_KERNEL_STACK_RESERVED ==
|
|
* K_KERNEL_STACK_SIZEOF(my_stack)
|
|
*/
|
|
#ifdef CONFIG_USERSPACE
|
|
/* Not defined if user mode disabled, all stacks are kernel stacks */
|
|
if (scenario_data.is_user) {
|
|
adjusted = K_THREAD_STACK_LEN(scenario_data.declared_size);
|
|
} else
|
|
#endif
|
|
{
|
|
adjusted = K_KERNEL_STACK_LEN(scenario_data.declared_size);
|
|
}
|
|
adjusted -= reserved;
|
|
|
|
zassert_equal(end_space, 0, "unexpected unused space\n");
|
|
} else {
|
|
/* For arrays there may be unused space per-object. This is because
|
|
* every single array member must be aligned to the value returned
|
|
* by Z_{KERNEL|THREAD}_STACK_OBJ_ALIGN.
|
|
*
|
|
* If we define:
|
|
*
|
|
* K_{THREAD|KERNEL}_STACK_ARRAY_DEFINE(my_stack_array, num_stacks, X);
|
|
*
|
|
* We do not auto-expand usable space to cover this unused area. Doing
|
|
* this would require some way for the kernel to know that a stack object
|
|
* pointer passed in is an array member, which is currently not possible.
|
|
*
|
|
* The equivalence here is computable with:
|
|
* K_THREAD_STACK_SIZEOF(my_stack_array[0]) ==
|
|
* K_THREAD_STACK_LEN(X) - K_THREAD_STACK_RESERVED;
|
|
*/
|
|
|
|
if (scenario_data.is_user) {
|
|
adjusted = K_THREAD_STACK_LEN(scenario_data.declared_size);
|
|
} else {
|
|
adjusted = K_KERNEL_STACK_LEN(scenario_data.declared_size);
|
|
}
|
|
adjusted -= reserved;
|
|
|
|
/* At least make sure it's not negative, that means stack_info isn't set
|
|
* right
|
|
*/
|
|
zassert_true(end_space >= 0, "bad stack bounds in stack_info");
|
|
}
|
|
|
|
zassert_true(adjusted == scenario_data.reported_size,
|
|
"size mismatch: adjusted %zu vs. reported %zu",
|
|
adjusted, scenario_data.reported_size);
|
|
|
|
ret = k_thread_stack_space_get(k_current_get(), &unused);
|
|
if (!is_usermode && IS_ENABLED(CONFIG_NO_UNUSED_STACK_INSPECTION)) {
|
|
expected = -ENOTSUP;
|
|
} else {
|
|
expected = 0;
|
|
}
|
|
|
|
zassert_equal(ret, expected, "unexpected return value %d", ret);
|
|
if (ret == 0) {
|
|
printk("self-reported unused stack space: %zu\n", unused);
|
|
}
|
|
}
|
|
|
|
void stest_thread_entry(void *p1, void *p2, void *p3)
|
|
{
|
|
bool drop = (bool)p1;
|
|
|
|
if (drop) {
|
|
k_thread_user_mode_enter(stest_thread_entry, (void *)false,
|
|
p2, p3);
|
|
} else {
|
|
stack_buffer_scenarios();
|
|
}
|
|
}
|
|
|
|
void stest_thread_launch(uint32_t flags, bool drop)
|
|
{
|
|
int ret;
|
|
size_t unused;
|
|
|
|
k_thread_create(&test_thread, scenario_data.stack, STEST_STACKSIZE,
|
|
stest_thread_entry,
|
|
(void *)drop, NULL, NULL,
|
|
-1, flags, K_FOREVER);
|
|
|
|
#ifdef CONFIG_THREAD_STACK_MEM_MAPPED
|
|
scenario_data.stack_mapped = test_thread.stack_info.mapped.addr;
|
|
|
|
printk(" - Memory mapped stack object %p\n", scenario_data.stack_mapped);
|
|
#endif /* CONFIG_THREAD_STACK_MEM_MAPPED */
|
|
|
|
k_thread_start(&test_thread);
|
|
k_thread_join(&test_thread, K_FOREVER);
|
|
|
|
ret = k_thread_stack_space_get(&test_thread, &unused);
|
|
|
|
#ifdef CONFIG_THREAD_STACK_MEM_MAPPED
|
|
if (ret == -EINVAL) {
|
|
printk("! cannot report unused stack space due to stack no longer mapped.\n");
|
|
} else
|
|
#endif /* CONFIG_THREAD_STACK_MEM_MAPPED */
|
|
{
|
|
zassert_equal(ret, 0, "failed to calculate unused stack space\n");
|
|
printk("target thread unused stack space: %zu\n", unused);
|
|
}
|
|
}
|
|
|
|
void scenario_entry(void *stack_obj, size_t obj_size, size_t reported_size,
|
|
size_t declared_size, bool is_array)
|
|
{
|
|
bool is_user;
|
|
size_t metadata_size;
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
struct k_object *zo;
|
|
|
|
zo = k_object_find(stack_obj);
|
|
if (zo != NULL) {
|
|
is_user = true;
|
|
#ifdef CONFIG_GEN_PRIV_STACKS
|
|
metadata_size = zo->data.stack_data->size;
|
|
#else
|
|
metadata_size = zo->data.stack_size;
|
|
#endif /* CONFIG_GEN_PRIV_STACKS */
|
|
printk("stack may host user thread, size in metadata is %zu\n",
|
|
metadata_size);
|
|
} else
|
|
#endif /* CONFIG_USERSPACE */
|
|
{
|
|
metadata_size = 0;
|
|
is_user = false;
|
|
}
|
|
|
|
scenario_data.stack = stack_obj;
|
|
scenario_data.object_size = obj_size;
|
|
scenario_data.is_user = is_user;
|
|
scenario_data.metadata_size = metadata_size;
|
|
scenario_data.reported_size = reported_size;
|
|
scenario_data.declared_size = declared_size;
|
|
scenario_data.is_array = is_array;
|
|
|
|
printk("Stack object %p[%zu]\n", stack_obj, obj_size);
|
|
printk(" - Testing supervisor mode\n");
|
|
stest_thread_launch(0, false);
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
if (is_user) {
|
|
printk(" - Testing user mode (direct launch)\n");
|
|
stest_thread_launch(K_USER | K_INHERIT_PERMS, false);
|
|
printk(" - Testing user mode (drop)\n");
|
|
stest_thread_launch(K_INHERIT_PERMS, true);
|
|
}
|
|
#endif /* CONFIG_USERSPACE */
|
|
}
|
|
|
|
/**
|
|
* @brief Test kernel provides user thread read/write access to its own stack
|
|
* memory buffer
|
|
*
|
|
* @details Thread can access its own stack memory buffer and perform
|
|
* read/write operations.
|
|
*
|
|
* @ingroup kernel_memprotect_tests
|
|
*/
|
|
ZTEST(userspace_thread_stack, test_stack_buffer)
|
|
{
|
|
printk("Reserved space (thread stacks): %zu\n",
|
|
K_THREAD_STACK_RESERVED);
|
|
printk("Reserved space (kernel stacks): %zu\n",
|
|
K_KERNEL_STACK_RESERVED);
|
|
|
|
printk("CONFIG_ISR_STACK_SIZE %zu\n", (size_t)CONFIG_ISR_STACK_SIZE);
|
|
|
|
unsigned int num_cpus = arch_num_cpus();
|
|
|
|
for (int i = 0; i < num_cpus; i++) {
|
|
printk("irq stack %d: %p size %zu\n",
|
|
i, &z_interrupt_stacks[i],
|
|
sizeof(z_interrupt_stacks[i]));
|
|
}
|
|
|
|
printk("Provided stack size: %u\n", STEST_STACKSIZE);
|
|
|
|
printk("\ntesting user_stack\n");
|
|
scenario_entry(user_stack, sizeof(user_stack), K_THREAD_STACK_SIZEOF(user_stack),
|
|
STEST_STACKSIZE, false);
|
|
|
|
for (int i = 0; i < NUM_STACKS; i++) {
|
|
printk("\ntesting user_stack_array[%d]\n", i);
|
|
scenario_entry(user_stack_array[i],
|
|
sizeof(user_stack_array[i]),
|
|
K_THREAD_STACK_SIZEOF(user_stack_array[i]),
|
|
STEST_STACKSIZE, true);
|
|
}
|
|
|
|
printk("\ntesting kern_stack\n");
|
|
scenario_entry(kern_stack, sizeof(kern_stack), K_KERNEL_STACK_SIZEOF(kern_stack),
|
|
STEST_STACKSIZE, false);
|
|
|
|
for (int i = 0; i < NUM_STACKS; i++) {
|
|
printk("\ntesting kern_stack_array[%d]\n", i);
|
|
scenario_entry(kern_stack_array[i],
|
|
sizeof(kern_stack_array[i]),
|
|
K_KERNEL_STACK_SIZEOF(kern_stack_array[i]),
|
|
STEST_STACKSIZE, true);
|
|
}
|
|
|
|
printk("\ntesting stest_member_stack\n");
|
|
scenario_entry(&stest_member_stack.stack,
|
|
sizeof(stest_member_stack.stack),
|
|
K_KERNEL_STACK_SIZEOF(stest_member_stack.stack),
|
|
STEST_STACKSIZE, false);
|
|
}
|
|
|
|
void no_op_entry(void *p1, void *p2, void *p3)
|
|
{
|
|
|
|
printk("hi! bye!\n");
|
|
|
|
#ifdef CONFIG_DYNAMIC_OBJECTS
|
|
/* Allocate a dynamic kernel object, which gets freed on thread
|
|
* cleanup since this thread has the only reference.
|
|
*/
|
|
struct k_sem *dyn_sem = k_object_alloc(K_OBJ_SEM);
|
|
k_sem_init(dyn_sem, 1, 1);
|
|
printk("allocated semaphore %p\n", dyn_sem);
|
|
#endif
|
|
/* thread self-aborts, triggering idle thread cleanup */
|
|
}
|
|
|
|
/**
|
|
* @brief Show that the idle thread stack size is correct
|
|
*
|
|
* The idle thread has to occasionally clean up self-exiting threads.
|
|
* Exercise this and show that we didn't overflow, reporting out stack
|
|
* usage.
|
|
*
|
|
* @ingroup kernel_memprotect_tests
|
|
*/
|
|
ZTEST(userspace_thread_stack, test_idle_stack)
|
|
{
|
|
if (IS_ENABLED(CONFIG_KERNEL_COHERENCE)) {
|
|
/* Stacks on coherence platforms aren't coherent, and
|
|
* the idle stack may have been initialized on a
|
|
* different CPU!
|
|
*/
|
|
ztest_test_skip();
|
|
}
|
|
|
|
int ret;
|
|
#ifdef CONFIG_SMP
|
|
/* 1cpu test case, so all other CPUs are spinning with co-op
|
|
* threads blocking them. _current_cpu triggers an assertion.
|
|
*/
|
|
struct k_thread *idle = arch_curr_cpu()->idle_thread;
|
|
#else
|
|
struct k_thread *idle = _current_cpu->idle_thread;
|
|
#endif
|
|
size_t unused_bytes;
|
|
|
|
/* Spwawn a child thread which self-exits */
|
|
k_thread_create(&test_thread, kern_stack, STEST_STACKSIZE,
|
|
no_op_entry,
|
|
NULL, NULL, NULL,
|
|
-1, 0, K_NO_WAIT);
|
|
|
|
k_thread_join(&test_thread, K_FOREVER);
|
|
|
|
/* Also sleep for a bit, which also exercises the idle thread
|
|
* in case some PM hooks will run
|
|
*/
|
|
k_sleep(K_MSEC(1));
|
|
|
|
/* Now measure idle thread stack usage */
|
|
ret = k_thread_stack_space_get(idle, &unused_bytes);
|
|
zassert_true(ret == 0, "failed to obtain stack space");
|
|
zassert_true(unused_bytes > 0, "idle thread stack size %d too low",
|
|
CONFIG_IDLE_STACK_SIZE);
|
|
printk("unused idle thread stack size: %zu/%d (%zu used)\n",
|
|
unused_bytes, CONFIG_IDLE_STACK_SIZE,
|
|
CONFIG_IDLE_STACK_SIZE - unused_bytes);
|
|
|
|
}
|
|
|
|
void *thread_setup(void)
|
|
{
|
|
k_thread_system_pool_assign(k_current_get());
|
|
|
|
return NULL;
|
|
}
|
|
|
|
ZTEST_SUITE(userspace_thread_stack, NULL, thread_setup,
|
|
ztest_simple_1cpu_before, ztest_simple_1cpu_after, NULL);
|