zephyr/arch/riscv/core/elf.c
Eric Ackermann 5275d44409 llext: Add RISC-V arch-specific relocations
This commit introduces architecture-specific ELF relocations for RISC-V,
in accordance with the RISC-V PSABI specification:
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-elf.adoc
Also, the necessary compiler configurations for compiling LLEXT
extensions on RISC-V are added, and the llext tests are executed on
RISC-V targets.
Calling llext extensions from user threads in RISC-V is still
unsupported as of this commit.

Signed-off-by: Eric Ackermann <eric.ackermann@cispa.de>
2024-10-03 21:59:42 +01:00

374 lines
14 KiB
C

/** @file
* @brief Architecture-specific relocations for RISC-V instruction sets.
*/
/*
* Copyright (c) 2024 CISPA Helmholtz Center for Information Security gGmbH
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/llext/elf.h>
#include <zephyr/llext/llext.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/util.h>
#include <zephyr/arch/riscv/elf.h>
#include <stdlib.h>
LOG_MODULE_REGISTER(elf, CONFIG_LLEXT_LOG_LEVEL);
/*
* RISC-V relocations commonly use pairs of U-type and I-type instructions.
* U-type instructions have 20-bit immediates, I-type instructions have 12-bit immediates.
* Immediates in RISC-V are always sign-extended.
* Thereby, this type of relocation can reach any address within a 2^31-1 byte range.
*/
#define RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE INT32_MAX
/* S-type has 12-bit signed immediate */
#define RISCV_MAX_JUMP_DISTANCE_S_TYPE ((1 << 11) - 1)
/* I-type has 12-bit signed immediate also */
#define RISCV_MAX_JUMP_DISTANCE_I_TYPE ((1 << 11) - 1)
/* B-type has 13-bit signed immediate */
#define RISCV_MAX_JUMP_DISTANCE_B_TYPE ((1 << 12) - 1)
/* CB-type has 9-bit signed immediate */
#define RISCV_MAX_JUMP_DISTANCE_CB_TYPE ((1 << 8) - 1)
/* CJ-type has 12-bit signed immediate (last bit implicit 0) */
#define RISCV_MAX_JUMP_DISTANCE_CJ_TYPE ((1 << 11) - 1)
static inline int riscv_relocation_fits(long long jump_target, long long max_distance,
elf_word reloc_type)
{
if (llabs(jump_target) > max_distance) {
LOG_ERR("%lld byte relocation is not possible for type %" PRIu64 " (max %lld)!",
jump_target, (uint64_t)reloc_type, max_distance);
return -ENOEXEC; /* jump too far */
}
return 0;
}
static long long last_u_type_jump_target;
/**
* @brief RISC-V specific function for relocating partially linked ELF binaries
*
* This implementation follows the official RISC-V specification:
* https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-elf.adoc
*
*/
int arch_elf_relocate(elf_rela_t *rel, uintptr_t loc_unsigned, uintptr_t sym_base_addr_unsigned,
const char *sym_name, uintptr_t load_bias)
{
/* FIXME currently, RISC-V relocations all fit in ELF_32_R_TYPE */
elf_word reloc_type = ELF32_R_TYPE(rel->r_info);
/*
* The RISC-V specification uses the following symbolic names for the relocations:
*
* A - addend (rel->r_addend)
* B - base address (load_bias)
* G - global offset table (not supported yet)
* P - position of the relocation (loc)
* S - symbol value (sym_base_addr)
* V - value at the relocation position (*loc)
* GP - value of __global_pointer$ (not supported yet)
* TLSMODULE - TLS module for the object (not supported yet)
* TLSOFFSET - TLS static block for the object (not supported yet)
*/
intptr_t loc = (intptr_t)loc_unsigned;
uint8_t *loc8 = (uint8_t *)loc, tmp8;
uint16_t *loc16 = (uint16_t *)loc, tmp16;
uint32_t *loc32 = (uint32_t *)loc, tmp32;
uint64_t *loc64 = (uint64_t *)loc, tmp64;
/* uint32_t or uint64_t */
r_riscv_wordclass_t *loc_word = (r_riscv_wordclass_t *)loc;
uint32_t modified_operand;
uint16_t modified_compressed_operand;
int32_t imm8;
long long original_imm8, jump_target;
int16_t compressed_imm8;
__typeof__(rel->r_addend) target_alignment = 1;
const intptr_t sym_base_addr = (intptr_t)sym_base_addr_unsigned;
LOG_DBG("Relocating symbol %s at %p with base address %p load address %p type %" PRIu64,
sym_name, (void *)loc, (void *)sym_base_addr, (void *)load_bias,
(uint64_t)reloc_type);
/* FIXME not all types of relocations currently supported, especially TLS */
switch (reloc_type) {
case R_RISCV_NONE:
break;
case R_RISCV_32:
jump_target = sym_base_addr + rel->r_addend; /* S + A */
UNALIGNED_PUT((uint32_t)jump_target, loc32);
return riscv_relocation_fits(jump_target, INT32_MAX, reloc_type);
case R_RISCV_64:
/* full 64-bit range, need no range check */
UNALIGNED_PUT(sym_base_addr + rel->r_addend, loc64); /* S + A */
break;
case R_RISCV_RELATIVE:
/* either full 32-bit or 64-bit range, need no range check */
UNALIGNED_PUT(load_bias + rel->r_addend, loc_word); /* B + A */
break;
case R_RISCV_JUMP_SLOT:
/* either full 32-bit or 64-bit range, need no range check */
UNALIGNED_PUT(sym_base_addr, loc_word); /* S */
break;
case R_RISCV_BRANCH:
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
modified_operand = UNALIGNED_GET(loc32);
imm8 = jump_target;
modified_operand = R_RISCV_CLEAR_BTYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_BTYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_B_TYPE,
reloc_type);
case R_RISCV_JAL:
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
modified_operand = UNALIGNED_GET(loc32);
imm8 = jump_target;
modified_operand = R_RISCV_CLEAR_JTYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_JTYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
reloc_type);
case R_RISCV_CALL:
case R_RISCV_CALL_PLT:
case R_RISCV_PCREL_HI20:
modified_operand = UNALIGNED_GET(loc32);
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
imm8 = jump_target;
/* bit 12 of the immediate goes to I-type instruction and might
* change the sign of the number
*/
/* in order to avoid that, we add 1 to the upper immediate if bit 12 is one */
/* see RISC-V la pseudo instruction */
imm8 += imm8 & 0x800;
original_imm8 = imm8;
modified_operand = R_RISCV_CLEAR_UTYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_UTYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
if (reloc_type != R_RISCV_PCREL_HI20) {
/* PCREL_HI20 is only U-type, not truly U+I-type */
/* for the others, need to also modify following I-type */
loc32++;
imm8 = jump_target;
modified_operand = UNALIGNED_GET(loc32);
modified_operand = R_RISCV_CLEAR_ITYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_ITYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
}
last_u_type_jump_target = jump_target;
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
reloc_type);
case R_RISCV_PCREL_LO12_I:
/* need the same jump target as preceding U-type relocation */
if (last_u_type_jump_target == 0) {
LOG_ERR("R_RISCV_PCREL_LO12_I relocation without preceding U-type "
"relocation!");
return -ENOEXEC;
}
modified_operand = UNALIGNED_GET(loc32);
jump_target = last_u_type_jump_target; /* S - P */
last_u_type_jump_target = 0;
imm8 = jump_target;
modified_operand = R_RISCV_CLEAR_ITYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_ITYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
reloc_type);
break;
case R_RISCV_PCREL_LO12_S:
/* need the same jump target as preceding U-type relocation */
if (last_u_type_jump_target == 0) {
LOG_ERR("R_RISCV_PCREL_LO12_I relocation without preceding U-type "
"relocation!");
return -ENOEXEC;
}
modified_operand = UNALIGNED_GET(loc32);
jump_target = last_u_type_jump_target; /* S - P */
last_u_type_jump_target = 0;
imm8 = jump_target;
modified_operand = R_RISCV_CLEAR_STYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_STYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
reloc_type);
case R_RISCV_HI20:
jump_target = sym_base_addr + rel->r_addend; /* S + A */
modified_operand = UNALIGNED_GET(loc32);
imm8 = jump_target;
/* bit 12 of the immediate goes to I-type instruction and might
* change the sign of the number
*/
/* in order to avoid that, we add 1 to the upper immediate if bit 12 is one*/
/* see RISC-V la pseudo instruction */
original_imm8 = imm8;
imm8 += imm8 & 0x800;
modified_operand = R_RISCV_CLEAR_UTYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_UTYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
reloc_type);
case R_RISCV_LO12_I:
modified_operand = UNALIGNED_GET(loc32);
jump_target = sym_base_addr + rel->r_addend; /* S + A */
imm8 = jump_target;
/* this is always used with R_RISCV_HI20 */
modified_operand = R_RISCV_CLEAR_ITYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_ITYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
reloc_type);
case R_RISCV_LO12_S:
modified_operand = UNALIGNED_GET(loc32);
imm8 = sym_base_addr + rel->r_addend; /* S + A */
/*
* S-type is used for stores/loads etc.
* size check is done at compile time, as it depends on the size of
* the structure we are trying to load/store
*/
modified_operand = R_RISCV_CLEAR_STYPE_IMM8(modified_operand);
modified_operand = R_RISCV_SET_STYPE_IMM8(modified_operand, imm8);
UNALIGNED_PUT(modified_operand, loc32);
break;
/* for add/sub/set, compiler needs to ensure that the ELF sections are close enough */
case R_RISCV_ADD8:
tmp8 = UNALIGNED_GET(loc8);
tmp8 += sym_base_addr + rel->r_addend; /* V + S + A */
UNALIGNED_PUT(tmp8, loc8);
break;
case R_RISCV_ADD16:
tmp16 = UNALIGNED_GET(loc16);
tmp16 += sym_base_addr + rel->r_addend; /* V + S + A */
UNALIGNED_PUT(tmp16, loc16);
break;
case R_RISCV_ADD32:
tmp32 = UNALIGNED_GET(loc32);
tmp32 += sym_base_addr + rel->r_addend; /* V + S + A */
UNALIGNED_PUT(tmp32, loc32);
break;
case R_RISCV_ADD64:
tmp64 = UNALIGNED_GET(loc64);
tmp64 += sym_base_addr + rel->r_addend; /* V + S + A */
UNALIGNED_PUT(tmp64, loc64);
break;
case R_RISCV_SUB8:
tmp8 = UNALIGNED_GET(loc8);
tmp8 -= sym_base_addr + rel->r_addend; /* V - S - A */
UNALIGNED_PUT(tmp8, loc8);
break;
case R_RISCV_SUB16:
tmp16 = UNALIGNED_GET(loc16);
tmp16 -= sym_base_addr + rel->r_addend; /* V - S - A */
UNALIGNED_PUT(tmp16, loc16);
break;
case R_RISCV_SUB32:
tmp32 = UNALIGNED_GET(loc32);
tmp32 -= sym_base_addr + rel->r_addend; /* V - S - A */
UNALIGNED_PUT(tmp32, loc32);
break;
case R_RISCV_SUB64:
tmp64 = UNALIGNED_GET(loc64);
tmp64 -= sym_base_addr + rel->r_addend; /* V - S - A */
UNALIGNED_PUT(tmp64, loc64);
break;
case R_RISCV_SUB6:
tmp8 = UNALIGNED_GET(loc8) & (0x1F);
UNALIGNED_PUT(tmp8, loc8);
tmp8 = tmp8 - sym_base_addr - rel->r_addend; /* V - S - A */
tmp8 = tmp8 & (0x1F);
tmp8 = tmp8 | UNALIGNED_GET(loc8);
UNALIGNED_PUT(tmp8, loc8);
break;
case R_RISCV_SET6:
tmp8 = UNALIGNED_GET(loc8) & (0x1F);
UNALIGNED_PUT(tmp8, loc8);
tmp8 = sym_base_addr + rel->r_addend; /* S + A */
tmp8 = tmp8 | UNALIGNED_GET(loc8);
UNALIGNED_PUT(tmp8, loc8);
break;
case R_RISCV_SET8:
tmp8 = sym_base_addr + rel->r_addend; /* S + A */
UNALIGNED_PUT(tmp8, loc8);
break;
case R_RISCV_SET16:
tmp16 = sym_base_addr + rel->r_addend; /* S + A */
UNALIGNED_PUT(tmp16, loc16);
break;
case R_RISCV_SET32:
tmp32 = sym_base_addr + rel->r_addend; /* S + A */
UNALIGNED_PUT(tmp32, loc32);
break;
case R_RISCV_32_PCREL:
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
tmp32 = jump_target;
UNALIGNED_PUT(tmp32, loc32);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
reloc_type);
case R_RISCV_PLT32:
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
tmp32 = jump_target;
UNALIGNED_PUT(tmp32, loc32);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_U_PLUS_I_TYPE,
reloc_type);
case R_RISCV_RVC_BRANCH:
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
modified_compressed_operand = UNALIGNED_GET(loc16);
compressed_imm8 = jump_target;
modified_compressed_operand =
R_RISCV_CLEAR_CBTYPE_IMM8(modified_compressed_operand);
modified_compressed_operand =
R_RISCV_SET_CBTYPE_IMM8(modified_compressed_operand, compressed_imm8);
UNALIGNED_PUT(modified_compressed_operand, loc16);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_CB_TYPE,
reloc_type);
case R_RISCV_RVC_JUMP:
jump_target = sym_base_addr + rel->r_addend - loc; /* S + A - P */
modified_compressed_operand = UNALIGNED_GET(loc16);
compressed_imm8 = jump_target;
modified_compressed_operand =
R_RISCV_CLEAR_CJTYPE_IMM8(modified_compressed_operand);
modified_compressed_operand =
R_RISCV_SET_CJTYPE_IMM8(modified_compressed_operand, compressed_imm8);
UNALIGNED_PUT(modified_compressed_operand, loc16);
return riscv_relocation_fits(jump_target, RISCV_MAX_JUMP_DISTANCE_CJ_TYPE,
reloc_type);
case R_RISCV_ALIGN:
/* we are supposed to move the symbol such that it is aligned to the next power of
* two >= addend
*/
/* this involves moving the symbol */
while (target_alignment < rel->r_addend) {
target_alignment *= 2;
}
LOG_ERR("Symbol %s with location %p requires alignment to %" PRIu64 " bytes!",
sym_name, (void *)loc, (uint64_t)target_alignment);
LOG_ERR("Alignment relocation is currently not supported!");
return -ENOEXEC;
/* ignored, this is primarily intended for removing instructions during link-time
* optimization
*/
case R_RISCV_RELAX:
break;
default:
LOG_ERR("Unsupported relocation type: %" PRIu64 " for symbol: %s",
(uint64_t)reloc_type, sym_name);
return -ENOEXEC;
}
return 0;
}