zephyr/lib/os/heap.c
Nicolas Pitre 593997046b lib/os/heap: fix out-of-bounds usage of memcpy() in sys_heap_realloc()
The sys_heap_realloc() code falls back to allocating new memory
and copying the existing data over when it cannot adjust the size
in place. However the size of the data to copy should be the old
size and not the new size if we're extending the allocation.

Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
2021-02-02 19:08:24 -05:00

429 lines
11 KiB
C

/*
* Copyright (c) 2019 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <sys/sys_heap.h>
#include <kernel.h>
#include <string.h>
#include "heap.h"
static void *chunk_mem(struct z_heap *h, chunkid_t c)
{
chunk_unit_t *buf = chunk_buf(h);
uint8_t *ret = ((uint8_t *)&buf[c]) + chunk_header_bytes(h);
CHECK(!(((size_t)ret) & (big_heap(h) ? 7 : 3)));
return ret;
}
static void free_list_remove_bidx(struct z_heap *h, chunkid_t c, int bidx)
{
struct z_heap_bucket *b = &h->buckets[bidx];
CHECK(!chunk_used(h, c));
CHECK(b->next != 0);
CHECK(h->avail_buckets & (1 << bidx));
if (next_free_chunk(h, c) == c) {
/* this is the last chunk */
h->avail_buckets &= ~(1 << bidx);
b->next = 0;
} else {
chunkid_t first = prev_free_chunk(h, c),
second = next_free_chunk(h, c);
b->next = second;
set_next_free_chunk(h, first, second);
set_prev_free_chunk(h, second, first);
}
}
static void free_list_remove(struct z_heap *h, chunkid_t c)
{
if (!solo_free_header(h, c)) {
int bidx = bucket_idx(h, chunk_size(h, c));
free_list_remove_bidx(h, c, bidx);
}
}
static void free_list_add_bidx(struct z_heap *h, chunkid_t c, int bidx)
{
struct z_heap_bucket *b = &h->buckets[bidx];
if (b->next == 0U) {
CHECK((h->avail_buckets & (1 << bidx)) == 0);
/* Empty list, first item */
h->avail_buckets |= (1 << bidx);
b->next = c;
set_prev_free_chunk(h, c, c);
set_next_free_chunk(h, c, c);
} else {
CHECK(h->avail_buckets & (1 << bidx));
/* Insert before (!) the "next" pointer */
chunkid_t second = b->next;
chunkid_t first = prev_free_chunk(h, second);
set_prev_free_chunk(h, c, first);
set_next_free_chunk(h, c, second);
set_next_free_chunk(h, first, c);
set_prev_free_chunk(h, second, c);
}
}
static void free_list_add(struct z_heap *h, chunkid_t c)
{
if (!solo_free_header(h, c)) {
int bidx = bucket_idx(h, chunk_size(h, c));
free_list_add_bidx(h, c, bidx);
}
}
/* Splits a chunk "lc" into a left chunk and a right chunk at "rc".
* Leaves both chunks marked "free"
*/
static void split_chunks(struct z_heap *h, chunkid_t lc, chunkid_t rc)
{
CHECK(rc > lc);
CHECK(rc - lc < chunk_size(h, lc));
size_t sz0 = chunk_size(h, lc);
size_t lsz = rc - lc;
size_t rsz = sz0 - lsz;
set_chunk_size(h, lc, lsz);
set_chunk_size(h, rc, rsz);
set_left_chunk_size(h, rc, lsz);
set_left_chunk_size(h, right_chunk(h, rc), rsz);
}
/* Does not modify free list */
static void merge_chunks(struct z_heap *h, chunkid_t lc, chunkid_t rc)
{
size_t newsz = chunk_size(h, lc) + chunk_size(h, rc);
set_chunk_size(h, lc, newsz);
set_left_chunk_size(h, right_chunk(h, rc), newsz);
}
static void free_chunk(struct z_heap *h, chunkid_t c)
{
/* Merge with free right chunk? */
if (!chunk_used(h, right_chunk(h, c))) {
free_list_remove(h, right_chunk(h, c));
merge_chunks(h, c, right_chunk(h, c));
}
/* Merge with free left chunk? */
if (!chunk_used(h, left_chunk(h, c))) {
free_list_remove(h, left_chunk(h, c));
merge_chunks(h, left_chunk(h, c), c);
c = left_chunk(h, c);
}
free_list_add(h, c);
}
/*
* Return the closest chunk ID corresponding to given memory pointer.
* Here "closest" is only meaningful in the context of sys_heap_aligned_alloc()
* where wanted alignment might not always correspond to a chunk header
* boundary.
*/
static chunkid_t mem_to_chunkid(struct z_heap *h, void *p)
{
uint8_t *mem = p, *base = (uint8_t *)chunk_buf(h);
return (mem - chunk_header_bytes(h) - base) / CHUNK_UNIT;
}
void sys_heap_free(struct sys_heap *heap, void *mem)
{
if (mem == NULL) {
return; /* ISO C free() semantics */
}
struct z_heap *h = heap->heap;
chunkid_t c = mem_to_chunkid(h, mem);
/*
* This should catch many double-free cases.
* This is cheap enough so let's do it all the time.
*/
__ASSERT(chunk_used(h, c),
"unexpected heap state (double-free?) for memory at %p", mem);
/*
* It is easy to catch many common memory overflow cases with
* a quick check on this and next chunk header fields that are
* immediately before and after the freed memory.
*/
__ASSERT(left_chunk(h, right_chunk(h, c)) == c,
"corrupted heap bounds (buffer overflow?) for memory at %p",
mem);
set_chunk_used(h, c, false);
free_chunk(h, c);
}
static chunkid_t alloc_chunk(struct z_heap *h, size_t sz)
{
int bi = bucket_idx(h, sz);
struct z_heap_bucket *b = &h->buckets[bi];
if (bi > bucket_idx(h, h->len)) {
return 0;
}
/* First try a bounded count of items from the minimal bucket
* size. These may not fit, trying (e.g.) three means that
* (assuming that chunk sizes are evenly distributed[1]) we
* have a 7/8 chance of finding a match, thus keeping the
* number of such blocks consumed by allocation higher than
* the number of smaller blocks created by fragmenting larger
* ones.
*
* [1] In practice, they are never evenly distributed, of
* course. But even in pathological situations we still
* maintain our constant time performance and at worst see
* fragmentation waste of the order of the block allocated
* only.
*/
if (b->next) {
chunkid_t first = b->next;
int i = CONFIG_SYS_HEAP_ALLOC_LOOPS;
do {
chunkid_t c = b->next;
if (chunk_size(h, c) >= sz) {
free_list_remove_bidx(h, c, bi);
return c;
}
b->next = next_free_chunk(h, c);
CHECK(b->next != 0);
} while (--i && b->next != first);
}
/* Otherwise pick the smallest non-empty bucket guaranteed to
* fit and use that unconditionally.
*/
size_t bmask = h->avail_buckets & ~((1 << (bi + 1)) - 1);
if ((bmask & h->avail_buckets) != 0U) {
int minbucket = __builtin_ctz(bmask & h->avail_buckets);
chunkid_t c = h->buckets[minbucket].next;
free_list_remove_bidx(h, c, minbucket);
CHECK(chunk_size(h, c) >= sz);
return c;
}
return 0;
}
void *sys_heap_alloc(struct sys_heap *heap, size_t bytes)
{
struct z_heap *h = heap->heap;
if (bytes == 0U || size_too_big(h, bytes)) {
return NULL;
}
size_t chunk_sz = bytes_to_chunksz(h, bytes);
chunkid_t c = alloc_chunk(h, chunk_sz);
if (c == 0U) {
return NULL;
}
/* Split off remainder if any */
if (chunk_size(h, c) > chunk_sz) {
split_chunks(h, c, c + chunk_sz);
free_list_add(h, c + chunk_sz);
}
set_chunk_used(h, c, true);
return chunk_mem(h, c);
}
void *sys_heap_aligned_alloc(struct sys_heap *heap, size_t align, size_t bytes)
{
struct z_heap *h = heap->heap;
size_t padded_sz, gap, rewind;
/*
* Split align and rewind values (if any).
* We allow for one bit of rewind in addition to the alignment
* value to efficiently accommodate z_heap_aligned_alloc().
* So if e.g. align = 0x28 (32 | 8) this means we align to a 32-byte
* boundary and then rewind 8 bytes.
*/
rewind = align & -align;
if (align != rewind) {
align -= rewind;
gap = MIN(rewind, chunk_header_bytes(h));
} else {
if (align <= chunk_header_bytes(h)) {
return sys_heap_alloc(heap, bytes);
}
rewind = 0;
gap = chunk_header_bytes(h);
}
__ASSERT((align & (align - 1)) == 0, "align must be a power of 2");
if (bytes == 0 || size_too_big(h, bytes)) {
return NULL;
}
/*
* Find a free block that is guaranteed to fit.
* We over-allocate to account for alignment and then free
* the extra allocations afterwards.
*/
padded_sz = bytes_to_chunksz(h, bytes + align - gap);
chunkid_t c0 = alloc_chunk(h, padded_sz);
if (c0 == 0) {
return NULL;
}
uint8_t *mem = chunk_mem(h, c0);
/* Align allocated memory */
mem = (uint8_t *) ROUND_UP(mem + rewind, align) - rewind;
chunk_unit_t *end = (chunk_unit_t *) ROUND_UP(mem + bytes, CHUNK_UNIT);
/* Get corresponding chunks */
chunkid_t c = mem_to_chunkid(h, mem);
chunkid_t c_end = end - chunk_buf(h);
CHECK(c >= c0 && c < c_end && c_end <= c0 + padded_sz);
/* Split and free unused prefix */
if (c > c0) {
split_chunks(h, c0, c);
free_list_add(h, c0);
}
/* Split and free unused suffix */
if (right_chunk(h, c) > c_end) {
split_chunks(h, c, c_end);
free_list_add(h, c_end);
}
set_chunk_used(h, c, true);
return mem;
}
void *sys_heap_aligned_realloc(struct sys_heap *heap, void *ptr,
size_t align, size_t bytes)
{
struct z_heap *h = heap->heap;
/* special realloc semantics */
if (ptr == NULL) {
return sys_heap_aligned_alloc(heap, align, bytes);
}
if (bytes == 0) {
sys_heap_free(heap, ptr);
return NULL;
}
__ASSERT((align & (align - 1)) == 0, "align must be a power of 2");
if (size_too_big(h, bytes)) {
return NULL;
}
chunkid_t c = mem_to_chunkid(h, ptr);
chunkid_t rc = right_chunk(h, c);
size_t align_gap = (uint8_t *)ptr - (uint8_t *)chunk_mem(h, c);
size_t chunks_need = bytes_to_chunksz(h, bytes + align_gap);
if (align && ((uintptr_t)ptr & (align - 1))) {
/* ptr is not sufficiently aligned */
} else if (chunk_size(h, c) == chunks_need) {
/* We're good already */
return ptr;
} else if (chunk_size(h, c) > chunks_need) {
/* Shrink in place, split off and free unused suffix */
split_chunks(h, c, c + chunks_need);
set_chunk_used(h, c, true);
free_chunk(h, c + chunks_need);
return ptr;
} else if (!chunk_used(h, rc) &&
(chunk_size(h, c) + chunk_size(h, rc) >= chunks_need)) {
/* Expand: split the right chunk and append */
chunkid_t split_size = chunks_need - chunk_size(h, c);
free_list_remove(h, rc);
if (split_size < chunk_size(h, rc)) {
split_chunks(h, rc, rc + split_size);
free_list_add(h, rc + split_size);
}
merge_chunks(h, c, rc);
set_chunk_used(h, c, true);
return ptr;
}
/* Fallback: allocate and copy */
void *ptr2 = sys_heap_aligned_alloc(heap, align, bytes);
if (ptr2 != NULL) {
size_t prev_size = chunk_size(h, c) * CHUNK_UNIT
- chunk_header_bytes(h) - align_gap;
memcpy(ptr2, ptr, MIN(prev_size, bytes));
sys_heap_free(heap, ptr);
}
return ptr2;
}
void sys_heap_init(struct sys_heap *heap, void *mem, size_t bytes)
{
/* Must fit in a 31 bit count of HUNK_UNIT */
__ASSERT(bytes / CHUNK_UNIT <= 0x7fffffffU, "heap size is too big");
/* Reserve the final marker chunk's header */
__ASSERT(bytes > heap_footer_bytes(bytes), "heap size is too small");
bytes -= heap_footer_bytes(bytes);
/* Round the start up, the end down */
uintptr_t addr = ROUND_UP(mem, CHUNK_UNIT);
uintptr_t end = ROUND_DOWN((uint8_t *)mem + bytes, CHUNK_UNIT);
size_t buf_sz = (end - addr) / CHUNK_UNIT;
CHECK(end > addr);
__ASSERT(buf_sz > chunksz(sizeof(struct z_heap)), "heap size is too small");
struct z_heap *h = (struct z_heap *)addr;
heap->heap = h;
h->chunk0_hdr_area = 0;
h->len = buf_sz;
h->avail_buckets = 0;
int nb_buckets = bucket_idx(h, buf_sz) + 1;
size_t chunk0_size = chunksz(sizeof(struct z_heap) +
nb_buckets * sizeof(struct z_heap_bucket));
__ASSERT(chunk0_size + min_chunk_size(h) < buf_sz, "heap size is too small");
for (int i = 0; i < nb_buckets; i++) {
h->buckets[i].next = 0;
}
/* chunk containing our struct z_heap */
set_chunk_size(h, 0, chunk0_size);
set_chunk_used(h, 0, true);
/* chunk containing the free heap */
set_chunk_size(h, chunk0_size, buf_sz - chunk0_size);
set_left_chunk_size(h, chunk0_size, chunk0_size);
/* the end marker chunk */
set_chunk_size(h, buf_sz, 0);
set_left_chunk_size(h, buf_sz, buf_sz - chunk0_size);
set_chunk_used(h, buf_sz, true);
free_list_add(h, chunk0_size);
}