zephyr/subsys/net/lib/dns/resolve.c
Jukka Rissanen 43aa12fe25 net: dns: Do not resolve IPv6 address if IPv6 is disabled
If IPv6 is disabled, then it is useless to try to resolve
IPv6 address because "struct sockaddr" does not have enough
space to store IPv6 address.

Fixes #1487

Signed-off-by: Jukka Rissanen <jukka.rissanen@linux.intel.com>
2017-09-20 08:55:06 +03:00

911 lines
20 KiB
C

/** @file
* @brief DNS resolve API
*
* An API for applications to do DNS query.
*/
/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#if defined(CONFIG_NET_DEBUG_DNS_RESOLVE)
#define SYS_LOG_DOMAIN "dns/resolve"
#define NET_LOG_ENABLED 1
#endif
#include <zephyr/types.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <net/net_ip.h>
#include <net/net_pkt.h>
#include <net/dns_resolve.h>
#include "dns_pack.h"
#define DNS_SERVER_COUNT CONFIG_DNS_RESOLVER_MAX_SERVERS
#define SERVER_COUNT (DNS_SERVER_COUNT + MDNS_SERVER_COUNT)
#define MDNS_IPV4_ADDR "224.0.0.251:5353"
#define MDNS_IPV6_ADDR "[ff02::fb]:5353"
static int dns_write(struct dns_resolve_context *ctx,
int server_idx,
int query_idx,
struct net_buf *dns_data,
struct net_buf *dns_qname);
#define DNS_BUF_TIMEOUT 500 /* ms */
/* RFC 1035, 3.1. Name space definitions
* To simplify implementations, the total length of a domain name (i.e.,
* label octets and label length octets) is restricted to 255 octets or
* less.
*/
#define DNS_MAX_NAME_LEN 255
#define DNS_QUERY_MAX_SIZE (DNS_MSG_HEADER_SIZE + DNS_MAX_NAME_LEN + \
DNS_QTYPE_LEN + DNS_QCLASS_LEN)
/* This value is recommended by RFC 1035 */
#define DNS_RESOLVER_MAX_BUF_SIZE 512
#define DNS_RESOLVER_MIN_BUF 1
#define DNS_RESOLVER_BUF_CTR (DNS_RESOLVER_MIN_BUF + \
CONFIG_DNS_RESOLVER_ADDITIONAL_BUF_CTR)
/* Compressed RR uses a pointer to another RR. So, min size is 12 bytes without
* considering RR payload.
* See https://tools.ietf.org/html/rfc1035#section-4.1.4
*/
#define DNS_ANSWER_PTR_LEN 12
/* See dns_unpack_answer, and also see:
* https://tools.ietf.org/html/rfc1035#section-4.1.2
*/
#define DNS_QUERY_POS 0x0c
#define DNS_IPV4_LEN sizeof(struct in_addr)
#define DNS_IPV6_LEN sizeof(struct in6_addr)
NET_BUF_POOL_DEFINE(dns_msg_pool, DNS_RESOLVER_BUF_CTR,
DNS_RESOLVER_MAX_BUF_SIZE, 0, NULL);
NET_BUF_POOL_DEFINE(dns_qname_pool, DNS_RESOLVER_BUF_CTR, DNS_MAX_NAME_LEN,
0, NULL);
static struct dns_resolve_context dns_default_ctx;
int dns_resolve_init(struct dns_resolve_context *ctx, const char *servers[])
{
#if defined(CONFIG_NET_IPV6)
struct sockaddr_in6 local_addr6 = {
.sin6_family = AF_INET6,
.sin6_port = 0,
};
#endif
#if defined(CONFIG_NET_IPV4)
struct sockaddr_in local_addr4 = {
.sin_family = AF_INET,
.sin_port = 0,
};
#endif
struct sockaddr *local_addr = NULL;
socklen_t addr_len = 0;
int i = 0, idx = 0;
int ret, count;
if (!ctx) {
return -ENOENT;
}
if (!servers || !*servers) {
return -ENOENT;
}
if (ctx->is_used) {
return -ENOTEMPTY;
}
memset(ctx, 0, sizeof(*ctx));
for (i = 0; i < SERVER_COUNT && servers[i]; i++) {
struct sockaddr *addr = &ctx->servers[idx].dns_server;
memset(addr, 0, sizeof(*addr));
ret = net_ipaddr_parse(servers[i], strlen(servers[i]), addr);
if (!ret) {
continue;
}
if (addr->sa_family == AF_INET) {
if (net_is_ipv4_addr_mcast(&net_sin(addr)->sin_addr)) {
ctx->servers[idx].is_mdns = true;
} else {
ctx->servers[idx].is_mdns = false;
}
if (net_sin(addr)->sin_port == 0) {
if (IS_ENABLED(CONFIG_MDNS_RESOLVER) &&
ctx->servers[idx].is_mdns) {
/* We only use 5353 as a default port
* if mDNS support is enabled. User can
* override this by defining the port
* in config file.
*/
net_sin(addr)->sin_port = htons(5353);
} else {
net_sin(addr)->sin_port = htons(53);
}
}
} else {
if (net_is_ipv6_addr_mcast(&net_sin6(addr)->sin6_addr)) {
ctx->servers[idx].is_mdns = true;
} else {
ctx->servers[idx].is_mdns = false;
}
if (net_sin6(addr)->sin6_port == 0) {
if (IS_ENABLED(CONFIG_MDNS_RESOLVER) &&
ctx->servers[idx].is_mdns) {
net_sin6(addr)->sin6_port = htons(5353);
} else {
net_sin6(addr)->sin6_port = htons(53);
}
}
}
NET_DBG("[%d] %s", i, servers[i]);
idx++;
}
for (i = 0, count = 0;
i < SERVER_COUNT && ctx->servers[i].dns_server.sa_family; i++) {
if (ctx->servers[i].dns_server.sa_family == AF_INET6) {
#if defined(CONFIG_NET_IPV6)
local_addr = (struct sockaddr *)&local_addr6;
addr_len = sizeof(struct sockaddr_in6);
#else
continue;
#endif
}
if (ctx->servers[i].dns_server.sa_family == AF_INET) {
#if defined(CONFIG_NET_IPV4)
local_addr = (struct sockaddr *)&local_addr4;
addr_len = sizeof(struct sockaddr_in);
#else
continue;
#endif
}
if (!local_addr) {
NET_DBG("Local address not set");
return -EAFNOSUPPORT;
}
ret = net_context_get(ctx->servers[i].dns_server.sa_family,
SOCK_DGRAM, IPPROTO_UDP,
&ctx->servers[i].net_ctx);
if (ret < 0) {
NET_DBG("Cannot get net_context (%d)", ret);
return ret;
}
ret = net_context_bind(ctx->servers[i].net_ctx,
local_addr, addr_len);
if (ret < 0) {
NET_DBG("Cannot bind DNS context (%d)", ret);
return ret;
}
count++;
}
if (count == 0) {
/* No servers defined */
NET_DBG("No DNS servers defined.");
return -EINVAL;
}
ctx->is_used = true;
ctx->buf_timeout = DNS_BUF_TIMEOUT;
return 0;
}
static inline int get_cb_slot(struct dns_resolve_context *ctx)
{
int i;
for (i = 0; i < CONFIG_DNS_NUM_CONCUR_QUERIES; i++) {
if (!ctx->queries[i].cb) {
return i;
}
}
return -ENOENT;
}
static inline int get_slot_by_id(struct dns_resolve_context *ctx,
u16_t dns_id)
{
int i;
for (i = 0; i < CONFIG_DNS_NUM_CONCUR_QUERIES; i++) {
if (ctx->queries[i].cb && ctx->queries[i].id == dns_id) {
return i;
}
}
return -ENOENT;
}
static int dns_read(struct dns_resolve_context *ctx,
struct net_pkt *pkt,
struct net_buf *dns_data,
u16_t *dns_id,
struct net_buf *dns_cname,
struct dns_addrinfo *info)
{
/* Helper struct to track the dns msg received from the server */
struct dns_msg_t dns_msg;
u32_t ttl; /* RR ttl, so far it is not passed to caller */
u8_t *src, *addr;
int address_size;
/* index that points to the current answer being analyzed */
int answer_ptr;
int data_len;
int offset;
int items;
int ret;
int server_idx, query_idx;
data_len = min(net_pkt_appdatalen(pkt), DNS_RESOLVER_MAX_BUF_SIZE);
offset = net_pkt_get_len(pkt) - data_len;
/* TODO: Instead of this temporary copy, just use the net_pkt directly.
*/
ret = net_frag_linear_copy(dns_data, pkt->frags, offset, data_len);
if (ret < 0) {
ret = DNS_EAI_MEMORY;
goto quit;
}
dns_msg.msg = dns_data->data;
dns_msg.msg_size = data_len;
/* The dns_unpack_response_header() has design flaw as it expects
* dns id to be given instead of returning the id to the caller.
* In our case we would like to get it returned instead so that we
* can match the DNS query that we sent. When dns_read() is called,
* we do not know what the DNS id is yet.
*/
*dns_id = dns_unpack_header_id(dns_msg.msg);
query_idx = get_slot_by_id(ctx, *dns_id);
if (query_idx < 0) {
ret = DNS_EAI_SYSTEM;
goto quit;
}
if (dns_header_rcode(dns_msg.msg) == DNS_HEADER_REFUSED) {
ret = DNS_EAI_FAIL;
goto quit;
}
ret = dns_unpack_response_header(&dns_msg, *dns_id);
if (ret < 0) {
ret = DNS_EAI_FAIL;
goto quit;
}
if (dns_header_qdcount(dns_msg.msg) != 1) {
ret = DNS_EAI_FAIL;
goto quit;
}
ret = dns_unpack_response_query(&dns_msg);
if (ret < 0) {
ret = DNS_EAI_FAIL;
goto quit;
}
if (ctx->queries[query_idx].query_type == DNS_QUERY_TYPE_A) {
address_size = DNS_IPV4_LEN;
addr = (u8_t *)&net_sin(&info->ai_addr)->sin_addr;
info->ai_family = AF_INET;
info->ai_addr.sa_family = AF_INET;
info->ai_addrlen = sizeof(struct sockaddr_in);
} else if (ctx->queries[query_idx].query_type == DNS_QUERY_TYPE_AAAA) {
/* We cannot resolve IPv6 address if IPv6 is disabled. The reason
* being that "struct sockaddr" does not have enough space for
* IPv6 address in that case.
*/
#if defined(CONFIG_NET_IPV6)
address_size = DNS_IPV6_LEN;
addr = (u8_t *)&net_sin6(&info->ai_addr)->sin6_addr;
info->ai_family = AF_INET6;
info->ai_addr.sa_family = AF_INET6;
info->ai_addrlen = sizeof(struct sockaddr_in6);
#else
ret = DNS_EAI_FAMILY;
goto quit;
#endif
} else {
ret = DNS_EAI_FAMILY;
goto quit;
}
/* while loop to traverse the response */
answer_ptr = DNS_QUERY_POS;
items = 0;
server_idx = 0;
while (server_idx < dns_header_ancount(dns_msg.msg)) {
ret = dns_unpack_answer(&dns_msg, answer_ptr, &ttl);
if (ret < 0) {
ret = DNS_EAI_FAIL;
goto quit;
}
switch (dns_msg.response_type) {
case DNS_RESPONSE_IP:
if (dns_msg.response_length < address_size) {
/* it seems this is a malformed message */
ret = DNS_EAI_FAIL;
goto quit;
}
src = dns_msg.msg + dns_msg.response_position;
memcpy(addr, src, address_size);
ctx->queries[query_idx].cb(DNS_EAI_INPROGRESS, info,
ctx->queries[query_idx].user_data);
items++;
break;
case DNS_RESPONSE_CNAME_NO_IP:
/* Instead of using the QNAME at DNS_QUERY_POS,
* we will use this CNAME
*/
answer_ptr = dns_msg.response_position;
break;
default:
ret = DNS_EAI_FAIL;
goto quit;
}
/* Update the answer offset to point to the next RR (answer) */
dns_msg.answer_offset += DNS_ANSWER_PTR_LEN;
dns_msg.answer_offset += dns_msg.response_length;
server_idx++;
}
/* No IP addresses were found, so we take the last CNAME to generate
* another query. Number of additional queries is controlled via Kconfig
*/
if (items == 0) {
if (dns_msg.response_type == DNS_RESPONSE_CNAME_NO_IP) {
u16_t pos = dns_msg.response_position;
ret = dns_copy_qname(dns_cname->data, &dns_cname->len,
dns_cname->size, &dns_msg, pos);
if (ret < 0) {
ret = DNS_EAI_SYSTEM;
goto quit;
}
ret = DNS_EAI_AGAIN;
goto finished;
}
}
if (items == 0) {
ret = DNS_EAI_NODATA;
} else {
ret = DNS_EAI_ALLDONE;
}
/* Marks the end of the results */
ctx->queries[query_idx].cb(ret, NULL,
ctx->queries[query_idx].user_data);
if (k_delayed_work_remaining_get(&ctx->queries[query_idx].timer) > 0) {
k_delayed_work_cancel(&ctx->queries[query_idx].timer);
}
ctx->queries[query_idx].cb = NULL;
net_pkt_unref(pkt);
return 0;
finished:
dns_resolve_cancel(ctx, *dns_id);
quit:
net_pkt_unref(pkt);
return ret;
}
static void cb_recv(struct net_context *net_ctx,
struct net_pkt *pkt,
int status,
void *user_data)
{
struct dns_resolve_context *ctx = user_data;
struct dns_addrinfo info = { 0 };
struct net_buf *dns_cname = NULL;
struct net_buf *dns_data = NULL;
u16_t dns_id = 0;
int ret, i;
ARG_UNUSED(net_ctx);
if (status) {
ret = DNS_EAI_SYSTEM;
goto quit;
}
dns_data = net_buf_alloc(&dns_msg_pool, ctx->buf_timeout);
if (!dns_data) {
ret = DNS_EAI_MEMORY;
goto quit;
}
dns_cname = net_buf_alloc(&dns_qname_pool, ctx->buf_timeout);
if (!dns_cname) {
ret = DNS_EAI_MEMORY;
goto quit;
}
ret = dns_read(ctx, pkt, dns_data, &dns_id, dns_cname, &info);
if (!ret) {
/* We called the callback already in dns_read() if there
* was no errors.
*/
goto free_buf;
}
/* Query again if we got CNAME */
if (ret == DNS_EAI_AGAIN) {
int failure = 0;
int j;
i = get_slot_by_id(ctx, dns_id);
if (i < 0) {
goto free_buf;
}
for (j = 0; j < SERVER_COUNT; j++) {
if (!ctx->servers[j].net_ctx) {
continue;
}
ret = dns_write(ctx, j, i, dns_data, dns_cname);
if (ret < 0) {
failure++;
}
}
if (failure) {
NET_DBG("DNS cname query failed %d times", failure);
if (failure == j) {
ret = DNS_EAI_SYSTEM;
goto quit;
}
}
goto free_buf;
}
quit:
i = get_slot_by_id(ctx, dns_id);
if (i < 0) {
goto free_buf;
}
if (k_delayed_work_remaining_get(&ctx->queries[i].timer) > 0) {
k_delayed_work_cancel(&ctx->queries[i].timer);
}
ctx->queries[i].cb(ret, &info, ctx->queries[i].user_data);
ctx->queries[i].cb = NULL;
free_buf:
if (dns_data) {
net_buf_unref(dns_data);
}
if (dns_cname) {
net_buf_unref(dns_cname);
}
}
static int dns_write(struct dns_resolve_context *ctx,
int server_idx,
int query_idx,
struct net_buf *dns_data,
struct net_buf *dns_qname)
{
enum dns_query_type query_type;
struct net_context *net_ctx;
struct sockaddr *server;
struct net_pkt *pkt;
int server_addr_len;
u16_t dns_id;
int ret;
net_ctx = ctx->servers[server_idx].net_ctx;
server = &ctx->servers[server_idx].dns_server;
dns_id = ctx->queries[query_idx].id;
query_type = ctx->queries[query_idx].query_type;
ret = dns_msg_pack_query(dns_data->data, &dns_data->len, dns_data->size,
dns_qname->data, dns_qname->len, dns_id,
(enum dns_rr_type)query_type);
if (ret < 0) {
ret = -EINVAL;
goto quit;
}
pkt = net_pkt_get_tx(net_ctx, ctx->buf_timeout);
if (!pkt) {
ret = -ENOMEM;
goto quit;
}
ret = net_pkt_append_all(pkt, dns_data->len, dns_data->data,
ctx->buf_timeout);
if (ret < 0) {
ret = -ENOMEM;
goto quit;
}
ret = net_context_recv(net_ctx, cb_recv, K_NO_WAIT, ctx);
if (ret < 0 && ret != -EALREADY) {
NET_DBG("Could not receive from socket (%d)", ret);
net_pkt_unref(pkt);
goto quit;
}
if (server->sa_family == AF_INET) {
server_addr_len = sizeof(struct sockaddr_in);
} else {
server_addr_len = sizeof(struct sockaddr_in6);
}
ret = net_context_sendto(pkt, server, server_addr_len, NULL,
K_NO_WAIT, NULL, NULL);
if (ret < 0) {
NET_DBG("Cannot send query (%d)", ret);
net_pkt_unref(pkt);
goto quit;
}
ret = k_delayed_work_submit(&ctx->queries[query_idx].timer,
ctx->queries[query_idx].timeout);
if (ret < 0) {
NET_DBG("[%u] cannot submit work to server idx %d for id %u "
"timeout %u ret %d",
query_idx, server_idx, dns_id,
ctx->queries[query_idx].timeout, ret);
goto quit;
} else {
NET_DBG("[%u] submitting work to server idx %d for id %u "
"timeout %u",
query_idx, server_idx, dns_id,
ctx->queries[query_idx].timeout);
}
ret = 0;
quit:
return ret;
}
int dns_resolve_cancel(struct dns_resolve_context *ctx, u16_t dns_id)
{
int i;
i = get_slot_by_id(ctx, dns_id);
if (i < 0) {
return -ENOENT;
}
NET_DBG("Cancelling DNS req %u", dns_id);
if (k_delayed_work_remaining_get(&ctx->queries[i].timer) > 0) {
k_delayed_work_cancel(&ctx->queries[i].timer);
}
ctx->queries[i].cb(DNS_EAI_CANCELED, NULL, ctx->queries[i].user_data);
ctx->queries[i].cb = NULL;
return 0;
}
static void query_timeout(struct k_work *work)
{
struct dns_pending_query *pending_query =
CONTAINER_OF(work, struct dns_pending_query, timer);
NET_DBG("Query timeout DNS req %u", pending_query->id);
dns_resolve_cancel(pending_query->ctx, pending_query->id);
}
int dns_resolve_name(struct dns_resolve_context *ctx,
const char *query,
enum dns_query_type type,
u16_t *dns_id,
dns_resolve_cb_t cb,
void *user_data,
s32_t timeout)
{
struct net_buf *dns_data = NULL;
struct net_buf *dns_qname = NULL;
struct sockaddr addr;
int ret, i = -1, j = 0;
int failure = 0;
bool mdns_query = false;
if (!ctx || !ctx->is_used || !query || !cb) {
return -EINVAL;
}
/* Timeout cannot be 0 as we cannot resolve name that fast.
*/
if (timeout == K_NO_WAIT) {
return -EINVAL;
}
ret = net_ipaddr_parse(query, strlen(query), &addr);
if (ret) {
/* The query name was already in numeric form, no
* need to continue further.
*/
struct dns_addrinfo info = { 0 };
if (type == DNS_QUERY_TYPE_A) {
memcpy(net_sin(&info.ai_addr), net_sin(&addr),
sizeof(struct sockaddr_in));
info.ai_family = AF_INET;
info.ai_addr.sa_family = AF_INET;
info.ai_addrlen = sizeof(struct sockaddr_in);
} else if (type == DNS_QUERY_TYPE_AAAA) {
#if defined(CONFIG_NET_IPV6)
memcpy(net_sin6(&info.ai_addr), net_sin6(&addr),
sizeof(struct sockaddr_in6));
info.ai_family = AF_INET6;
info.ai_addr.sa_family = AF_INET6;
info.ai_addrlen = sizeof(struct sockaddr_in6);
#else
ret = -EAFNOSUPPORT;
goto quit;
#endif
} else {
goto try_resolve;
}
cb(DNS_EAI_INPROGRESS, &info, user_data);
cb(DNS_EAI_ALLDONE, NULL, user_data);
return 0;
}
try_resolve:
i = get_cb_slot(ctx);
if (i < 0) {
return -EAGAIN;
}
ctx->queries[i].cb = cb;
ctx->queries[i].timeout = timeout;
ctx->queries[i].query = query;
ctx->queries[i].query_type = type;
ctx->queries[i].user_data = user_data;
ctx->queries[i].ctx = ctx;
k_delayed_work_init(&ctx->queries[i].timer, query_timeout);
dns_data = net_buf_alloc(&dns_msg_pool, ctx->buf_timeout);
if (!dns_data) {
ret = -ENOMEM;
goto quit;
}
dns_qname = net_buf_alloc(&dns_qname_pool, ctx->buf_timeout);
if (!dns_qname) {
ret = -ENOMEM;
goto quit;
}
ret = dns_msg_pack_qname(&dns_qname->len, dns_qname->data,
DNS_MAX_NAME_LEN, ctx->queries[i].query);
if (ret < 0) {
goto quit;
}
ctx->queries[i].id = sys_rand32_get();
/* Do this immediately after calculating the Id so that the unit
* test will work properly.
*/
if (dns_id) {
*dns_id = ctx->queries[i].id;
NET_DBG("DNS id will be %u", *dns_id);
}
/* If mDNS is enabled, then send .local queries only to multicast
* address.
*/
if (IS_ENABLED(CONFIG_MDNS_RESOLVER)) {
const char *ptr = strrchr(query, '.');
/* Note that we memcmp() the \0 here too */
if (ptr && !memcmp(ptr, (const void *){ ".local" }, 7)) {
mdns_query = true;
}
}
for (j = 0; j < SERVER_COUNT; j++) {
if (!ctx->servers[j].net_ctx) {
continue;
}
/* If mDNS is enabled, then send .local queries only to
* a well known multicast mDNS server address.
*/
if (IS_ENABLED(CONFIG_MDNS_RESOLVER) && mdns_query &&
!ctx->servers[j].is_mdns) {
continue;
}
ret = dns_write(ctx, j, i, dns_data, dns_qname);
if (ret < 0) {
failure++;
continue;
}
/* Do one concurrent query only for each name resolve.
* TODO: Change the i (query index) to do multiple concurrent
* to each server.
*/
break;
}
if (failure) {
NET_DBG("DNS query failed %d times", failure);
if (failure == j) {
ret = -ENOENT;
goto quit;
}
}
ret = 0;
quit:
if (ret < 0) {
if (i >= 0) {
if (k_delayed_work_remaining_get(
&ctx->queries[i].timer) > 0) {
k_delayed_work_cancel(&ctx->queries[i].timer);
}
ctx->queries[i].cb = NULL;
}
if (dns_id) {
*dns_id = 0;
}
}
if (dns_data) {
net_buf_unref(dns_data);
}
if (dns_qname) {
net_buf_unref(dns_qname);
}
return ret;
}
int dns_resolve_close(struct dns_resolve_context *ctx)
{
int i;
if (!ctx->is_used) {
return -ENOENT;
}
for (i = 0; i < SERVER_COUNT; i++) {
if (ctx->servers[i].net_ctx) {
net_context_put(ctx->servers[i].net_ctx);
}
}
return 0;
}
struct dns_resolve_context *dns_resolve_get_default(void)
{
return &dns_default_ctx;
}
void dns_init_resolver(void)
{
#if defined(CONFIG_DNS_SERVER_IP_ADDRESSES)
static const char *dns_servers[SERVER_COUNT + 1];
int count = DNS_SERVER_COUNT;
int ret;
if (count > 5) {
count = 5;
}
switch (count) {
#if DNS_SERVER_COUNT > 4
case 5:
dns_servers[4] = CONFIG_DNS_SERVER5;
/* fallthrough */
#endif
#if DNS_SERVER_COUNT > 3
case 4:
dns_servers[3] = CONFIG_DNS_SERVER4;
/* fallthrough */
#endif
#if DNS_SERVER_COUNT > 2
case 3:
dns_servers[2] = CONFIG_DNS_SERVER3;
/* fallthrough */
#endif
#if DNS_SERVER_COUNT > 1
case 2:
dns_servers[1] = CONFIG_DNS_SERVER2;
/* fallthrough */
#endif
#if DNS_SERVER_COUNT > 0
case 1:
dns_servers[0] = CONFIG_DNS_SERVER1;
/* fallthrough */
#endif
case 0:
break;
}
#if defined(CONFIG_MDNS_RESOLVER) && (MDNS_SERVER_COUNT > 0)
#if defined(CONFIG_NET_IPV6) && defined(CONFIG_NET_IPV4)
dns_servers[DNS_SERVER_COUNT + 1] = MDNS_IPV6_ADDR;
dns_servers[DNS_SERVER_COUNT] = MDNS_IPV4_ADDR;
#else /* CONFIG_NET_IPV6 && CONFIG_NET_IPV4 */
#if defined(CONFIG_NET_IPV6)
dns_servers[DNS_SERVER_COUNT] = MDNS_IPV6_ADDR;
#endif
#if defined(CONFIG_NET_IPV4)
dns_servers[DNS_SERVER_COUNT] = MDNS_IPV4_ADDR;
#endif
#endif /* CONFIG_NET_IPV6 && CONFIG_NET_IPV4 */
#endif /* MDNS_RESOLVER && MDNS_SERVER_COUNT > 0 */
dns_servers[SERVER_COUNT] = NULL;
ret = dns_resolve_init(dns_resolve_get_default(), dns_servers);
if (ret < 0) {
NET_WARN("Cannot initialize DNS resolver (%d)", ret);
}
#endif
}