zephyr/subsys/bluetooth/controller/hci/hci_driver.c
Carles Cufi 493852bac3 Bluetooth: controller: Fix flow control packet drop
The main purpose of recv_thread is to process incoming events from the
radio and also any buffered items waiting to be dispatched to the Host
and that are pending because of lack of Host buffers.
When an iteration of the recv_thread obtains a element from the radio it
needs to process it immediately, either sending it straight away to the
Host or appending it to the queue. This was not the case before this
patch, where the concurrency of a buffered packet with one coming from
the radio would cause the latter to be "dropped", causing missing
packets.

Signed-off-by: Carles Cufi <carles.cufi@nordicsemi.no>
2017-10-18 14:43:39 +02:00

461 lines
9.8 KiB
C

/*
* Copyright (c) 2016 Nordic Semiconductor ASA
* Copyright (c) 2016 Vinayak Kariappa Chettimada
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <stddef.h>
#include <string.h>
#include <zephyr.h>
#include <soc.h>
#include <init.h>
#include <device.h>
#include <clock_control.h>
#include <atomic.h>
#include <misc/util.h>
#include <misc/stack.h>
#include <misc/byteorder.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <drivers/bluetooth/hci_driver.h>
#ifdef CONFIG_CLOCK_CONTROL_NRF5
#include <drivers/clock_control/nrf5_clock_control.h>
#endif
#define BT_DBG_ENABLED IS_ENABLED(CONFIG_BT_DEBUG_HCI_DRIVER)
#include "common/log.h"
#include "util/util.h"
#include "hal/ccm.h"
#include "hal/radio.h"
#include "ll_sw/pdu.h"
#include "ll_sw/ctrl.h"
#include "ll.h"
#include "hci_internal.h"
#include "hal/debug.h"
#define NODE_RX(_node) CONTAINER_OF(_node, struct radio_pdu_node_rx, \
hdr.onion.node)
static K_SEM_DEFINE(sem_prio_recv, 0, UINT_MAX);
static K_FIFO_DEFINE(recv_fifo);
struct k_thread prio_recv_thread_data;
static BT_STACK_NOINIT(prio_recv_thread_stack,
CONFIG_BT_CTLR_RX_PRIO_STACK_SIZE);
struct k_thread recv_thread_data;
static BT_STACK_NOINIT(recv_thread_stack, CONFIG_BT_RX_STACK_SIZE);
#if defined(CONFIG_INIT_STACKS)
static u32_t prio_ts;
static u32_t rx_ts;
#endif
#if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL)
static struct k_poll_signal hbuf_signal =
K_POLL_SIGNAL_INITIALIZER(hbuf_signal);
static sys_slist_t hbuf_pend;
static s32_t hbuf_count;
#endif
static void prio_recv_thread(void *p1, void *p2, void *p3)
{
while (1) {
struct radio_pdu_node_rx *node_rx;
u8_t num_cmplt;
u16_t handle;
while ((num_cmplt = radio_rx_get(&node_rx, &handle))) {
#if defined(CONFIG_BT_CONN)
struct net_buf *buf;
buf = bt_buf_get_rx(BT_BUF_EVT, K_FOREVER);
hci_num_cmplt_encode(buf, handle, num_cmplt);
BT_DBG("Num Complete: 0x%04x:%u", handle, num_cmplt);
bt_recv_prio(buf);
k_yield();
#endif
}
if (node_rx) {
radio_rx_dequeue();
BT_DBG("RX node enqueue");
k_fifo_put(&recv_fifo, node_rx);
continue;
}
BT_DBG("sem take...");
k_sem_take(&sem_prio_recv, K_FOREVER);
BT_DBG("sem taken");
#if defined(CONFIG_INIT_STACKS)
if (k_uptime_get_32() - prio_ts > K_SECONDS(5)) {
STACK_ANALYZE("prio recv thread stack",
prio_recv_thread_stack);
prio_ts = k_uptime_get_32();
}
#endif
}
}
static inline struct net_buf *encode_node(struct radio_pdu_node_rx *node_rx,
s8_t class)
{
struct net_buf *buf = NULL;
/* Check if we need to generate an HCI event or ACL data */
switch (class) {
case HCI_CLASS_EVT_DISCARDABLE:
case HCI_CLASS_EVT_REQUIRED:
case HCI_CLASS_EVT_CONNECTION:
if (class == HCI_CLASS_EVT_DISCARDABLE) {
buf = bt_buf_get_rx(BT_BUF_EVT, K_NO_WAIT);
} else {
buf = bt_buf_get_rx(BT_BUF_EVT, K_FOREVER);
}
if (buf) {
hci_evt_encode(node_rx, buf);
}
break;
#if defined(CONFIG_BT_CONN)
case HCI_CLASS_ACL_DATA:
/* generate ACL data */
buf = bt_buf_get_rx(BT_BUF_ACL_IN, K_FOREVER);
hci_acl_encode(node_rx, buf);
break;
#endif
default:
LL_ASSERT(0);
break;
}
radio_rx_fc_set(node_rx->hdr.handle, 0);
node_rx->hdr.onion.next = 0;
radio_rx_mem_release(&node_rx);
return buf;
}
static inline struct net_buf *process_node(struct radio_pdu_node_rx *node_rx)
{
s8_t class = hci_get_class(node_rx);
struct net_buf *buf = NULL;
#if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL)
if (hbuf_count != -1) {
bool pend = !sys_slist_is_empty(&hbuf_pend);
/* controller to host flow control enabled */
switch (class) {
case HCI_CLASS_EVT_DISCARDABLE:
case HCI_CLASS_EVT_REQUIRED:
break;
case HCI_CLASS_EVT_CONNECTION:
/* for conn-related events, only pend is relevant */
hbuf_count = 1;
/* fallthrough */
case HCI_CLASS_ACL_DATA:
if (pend || !hbuf_count) {
sys_slist_append(&hbuf_pend,
&node_rx->hdr.onion.node);
BT_DBG("FC: Queuing item: %d", class);
return NULL;
}
break;
default:
LL_ASSERT(0);
break;
}
}
#endif
/* process regular node from radio */
buf = encode_node(node_rx, class);
return buf;
}
#if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL)
static inline struct net_buf *process_hbuf(struct radio_pdu_node_rx *n)
{
/* shadow total count in case of preemption */
struct radio_pdu_node_rx *node_rx = NULL;
s32_t hbuf_total = hci_hbuf_total;
struct net_buf *buf = NULL;
sys_snode_t *node = NULL;
s8_t class;
int reset;
reset = atomic_test_and_clear_bit(&hci_state_mask, HCI_STATE_BIT_RESET);
if (reset) {
/* flush queue, no need to free, the LL has already done it */
sys_slist_init(&hbuf_pend);
}
if (hbuf_total <= 0) {
hbuf_count = -1;
return NULL;
}
/* available host buffers */
hbuf_count = hbuf_total - (hci_hbuf_sent - hci_hbuf_acked);
/* host acked ACL packets, try to dequeue from hbuf */
node = sys_slist_peek_head(&hbuf_pend);
if (!node) {
return NULL;
}
/* Return early if this iteration already has a node to process */
node_rx = NODE_RX(node);
class = hci_get_class(node_rx);
if (n) {
if (class == HCI_CLASS_EVT_CONNECTION ||
(class == HCI_CLASS_ACL_DATA && hbuf_count)) {
/* node to process later, schedule an iteration */
BT_DBG("FC: signalling");
k_poll_signal(&hbuf_signal, 0x0);
}
return NULL;
}
switch (class) {
case HCI_CLASS_EVT_CONNECTION:
BT_DBG("FC: dequeueing event");
(void) sys_slist_get(&hbuf_pend);
break;
case HCI_CLASS_ACL_DATA:
if (hbuf_count) {
BT_DBG("FC: dequeueing ACL data");
(void) sys_slist_get(&hbuf_pend);
} else {
/* no buffers, HCI will signal */
node = NULL;
}
break;
case HCI_CLASS_EVT_DISCARDABLE:
case HCI_CLASS_EVT_REQUIRED:
default:
LL_ASSERT(0);
break;
}
if (node) {
buf = encode_node(node_rx, class);
/* Update host buffers after encoding */
hbuf_count = hbuf_total - (hci_hbuf_sent - hci_hbuf_acked);
/* next node */
node = sys_slist_peek_head(&hbuf_pend);
if (node) {
node_rx = NODE_RX(node);
class = hci_get_class(node_rx);
if (class == HCI_CLASS_EVT_CONNECTION ||
(class == HCI_CLASS_ACL_DATA && hbuf_count)) {
/* more to process, schedule an
* iteration
*/
BT_DBG("FC: signalling");
k_poll_signal(&hbuf_signal, 0x0);
}
}
}
return buf;
}
#endif
static void recv_thread(void *p1, void *p2, void *p3)
{
#if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL)
/* @todo: check if the events structure really needs to be static */
static struct k_poll_event events[2] = {
K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_SIGNAL,
K_POLL_MODE_NOTIFY_ONLY,
&hbuf_signal, 0),
K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_FIFO_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&recv_fifo, 0),
};
#endif
while (1) {
struct radio_pdu_node_rx *node_rx = NULL;
struct net_buf *buf = NULL;
BT_DBG("blocking");
#if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL)
int err;
err = k_poll(events, 2, K_FOREVER);
LL_ASSERT(err == 0);
if (events[0].state == K_POLL_STATE_SIGNALED) {
events[0].signal->signaled = 0;
} else if (events[1].state ==
K_POLL_STATE_FIFO_DATA_AVAILABLE) {
node_rx = k_fifo_get(events[1].fifo, 0);
}
events[0].state = K_POLL_STATE_NOT_READY;
events[1].state = K_POLL_STATE_NOT_READY;
/* process host buffers first if any */
buf = process_hbuf(node_rx);
#else
node_rx = k_fifo_get(&recv_fifo, K_FOREVER);
#endif
BT_DBG("unblocked");
if (node_rx && !buf) {
/* process regular node from radio */
buf = process_node(node_rx);
}
if (buf) {
if (buf->len) {
BT_DBG("Packet in: type:%u len:%u",
bt_buf_get_type(buf), buf->len);
bt_recv(buf);
} else {
net_buf_unref(buf);
}
}
k_yield();
#if defined(CONFIG_INIT_STACKS)
if (k_uptime_get_32() - rx_ts > K_SECONDS(5)) {
STACK_ANALYZE("recv thread stack", recv_thread_stack);
rx_ts = k_uptime_get_32();
}
#endif
}
}
static int cmd_handle(struct net_buf *buf)
{
struct net_buf *evt;
evt = hci_cmd_handle(buf);
if (evt) {
BT_DBG("Replying with event of %u bytes", evt->len);
bt_recv_prio(evt);
}
return 0;
}
#if defined(CONFIG_BT_CONN)
static int acl_handle(struct net_buf *buf)
{
struct net_buf *evt;
int err;
err = hci_acl_handle(buf, &evt);
if (evt) {
BT_DBG("Replying with event of %u bytes", evt->len);
bt_recv_prio(evt);
}
return err;
}
#endif /* CONFIG_BT_CONN */
static int hci_driver_send(struct net_buf *buf)
{
u8_t type;
int err;
BT_DBG("enter");
if (!buf->len) {
BT_ERR("Empty HCI packet");
return -EINVAL;
}
type = bt_buf_get_type(buf);
switch (type) {
#if defined(CONFIG_BT_CONN)
case BT_BUF_ACL_OUT:
err = acl_handle(buf);
break;
#endif /* CONFIG_BT_CONN */
case BT_BUF_CMD:
err = cmd_handle(buf);
break;
default:
BT_ERR("Unknown HCI type %u", type);
return -EINVAL;
}
if (!err) {
net_buf_unref(buf);
}
BT_DBG("exit: %d", err);
return err;
}
static int hci_driver_open(void)
{
u32_t err;
DEBUG_INIT();
err = ll_init(&sem_prio_recv);
if (err) {
BT_ERR("LL initialization failed: %u", err);
return err;
}
#if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL)
hci_init(&hbuf_signal);
#else
hci_init(NULL);
#endif
k_thread_create(&prio_recv_thread_data, prio_recv_thread_stack,
K_THREAD_STACK_SIZEOF(prio_recv_thread_stack),
prio_recv_thread, NULL, NULL, NULL,
K_PRIO_COOP(CONFIG_BT_CTLR_RX_PRIO), 0, K_NO_WAIT);
k_thread_create(&recv_thread_data, recv_thread_stack,
K_THREAD_STACK_SIZEOF(recv_thread_stack),
recv_thread, NULL, NULL, NULL,
K_PRIO_COOP(CONFIG_BT_RX_PRIO), 0, K_NO_WAIT);
BT_DBG("Success.");
return 0;
}
static const struct bt_hci_driver drv = {
.name = "Controller",
.bus = BT_HCI_DRIVER_BUS_VIRTUAL,
.open = hci_driver_open,
.send = hci_driver_send,
};
static int _hci_driver_init(struct device *unused)
{
ARG_UNUSED(unused);
bt_hci_driver_register(&drv);
return 0;
}
SYS_INIT(_hci_driver_init, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);