zephyr/subsys/net/lib/dns/resolve.c
Peter Bigot 1c7bf96019 net: dns: update to new k_work API
Switch to the new API for delayed work related to DNS queries.

In the previous solution it was assumed that the work item could be
immediately cancelled at the point the query slot was released.  This
is not true.  We need a secondary condition to record the fact that
the query was completed while the work item was still pending, and an
additional check to detect when the work item completed and the slot
reclaimed.

Also annotate functions to indicate when they require the lock on
query content to be held, add some helpers that abstract core
operations like invoking a callback or releasing a query slot, and fix
some more cases where query slot content was accessed outside of the
new lock infrastructure.

Signed-off-by: Peter Bigot <peter.bigot@nordicsemi.no>
2021-03-15 17:19:54 +02:00

1385 lines
32 KiB
C

/** @file
* @brief DNS resolve API
*
* An API for applications to do DNS query.
*/
/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <logging/log.h>
LOG_MODULE_REGISTER(net_dns_resolve, CONFIG_DNS_RESOLVER_LOG_LEVEL);
#include <zephyr/types.h>
#include <random/rand32.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/crc.h>
#include <net/net_ip.h>
#include <net/net_pkt.h>
#include <net/net_mgmt.h>
#include <net/dns_resolve.h>
#include "dns_pack.h"
#include "dns_internal.h"
#define DNS_SERVER_COUNT CONFIG_DNS_RESOLVER_MAX_SERVERS
#define SERVER_COUNT (DNS_SERVER_COUNT + DNS_MAX_MCAST_SERVERS)
#define MDNS_IPV4_ADDR "224.0.0.251:5353"
#define MDNS_IPV6_ADDR "[ff02::fb]:5353"
#define LLMNR_IPV4_ADDR "224.0.0.252:5355"
#define LLMNR_IPV6_ADDR "[ff02::1:3]:5355"
#define DNS_BUF_TIMEOUT K_MSEC(500) /* ms */
/* RFC 1035, 3.1. Name space definitions
* To simplify implementations, the total length of a domain name (i.e.,
* label octets and label length octets) is restricted to 255 octets or
* less.
*/
#define DNS_MAX_NAME_LEN 255
#define DNS_QUERY_MAX_SIZE (DNS_MSG_HEADER_SIZE + DNS_MAX_NAME_LEN + \
DNS_QTYPE_LEN + DNS_QCLASS_LEN)
/* This value is recommended by RFC 1035 */
#define DNS_RESOLVER_MAX_BUF_SIZE 512
#define DNS_RESOLVER_MIN_BUF 1
#define DNS_RESOLVER_BUF_CTR (DNS_RESOLVER_MIN_BUF + \
CONFIG_DNS_RESOLVER_ADDITIONAL_BUF_CTR)
/* Compressed RR uses a pointer to another RR. So, min size is 12 bytes without
* considering RR payload.
* See https://tools.ietf.org/html/rfc1035#section-4.1.4
*/
#define DNS_ANSWER_PTR_LEN 12
/* See dns_unpack_answer, and also see:
* https://tools.ietf.org/html/rfc1035#section-4.1.2
*/
#define DNS_QUERY_POS 0x0c
#define DNS_IPV4_LEN sizeof(struct in_addr)
#define DNS_IPV6_LEN sizeof(struct in6_addr)
NET_BUF_POOL_DEFINE(dns_msg_pool, DNS_RESOLVER_BUF_CTR,
DNS_RESOLVER_MAX_BUF_SIZE, 0, NULL);
NET_BUF_POOL_DEFINE(dns_qname_pool, DNS_RESOLVER_BUF_CTR, DNS_MAX_NAME_LEN,
0, NULL);
static struct dns_resolve_context dns_default_ctx;
/* Must be invoked with context lock held */
static int dns_write(struct dns_resolve_context *ctx,
int server_idx,
int query_idx,
struct net_buf *dns_data,
struct net_buf *dns_qname,
int hop_limit);
static bool server_is_mdns(sa_family_t family, struct sockaddr *addr)
{
if (family == AF_INET) {
if (net_ipv4_is_addr_mcast(&net_sin(addr)->sin_addr) &&
net_sin(addr)->sin_addr.s4_addr[3] == 251U) {
return true;
}
return false;
}
if (family == AF_INET6) {
if (net_ipv6_is_addr_mcast(&net_sin6(addr)->sin6_addr) &&
net_sin6(addr)->sin6_addr.s6_addr[15] == 0xfb) {
return true;
}
return false;
}
return false;
}
static bool server_is_llmnr(sa_family_t family, struct sockaddr *addr)
{
if (family == AF_INET) {
if (net_ipv4_is_addr_mcast(&net_sin(addr)->sin_addr) &&
net_sin(addr)->sin_addr.s4_addr[3] == 252U) {
return true;
}
return false;
}
if (family == AF_INET6) {
if (net_ipv6_is_addr_mcast(&net_sin6(addr)->sin6_addr) &&
net_sin6(addr)->sin6_addr.s6_addr[15] == 0x03) {
return true;
}
return false;
}
return false;
}
static void dns_postprocess_server(struct dns_resolve_context *ctx, int idx)
{
struct sockaddr *addr = &ctx->servers[idx].dns_server;
if (addr->sa_family == AF_INET) {
ctx->servers[idx].is_mdns = server_is_mdns(AF_INET, addr);
if (!ctx->servers[idx].is_mdns) {
ctx->servers[idx].is_llmnr =
server_is_llmnr(AF_INET, addr);
}
if (net_sin(addr)->sin_port == 0U) {
if (IS_ENABLED(CONFIG_MDNS_RESOLVER) &&
ctx->servers[idx].is_mdns) {
/* We only use 5353 as a default port
* if mDNS support is enabled. User can
* override this by defining the port
* in config file.
*/
net_sin(addr)->sin_port = htons(5353);
} else if (IS_ENABLED(CONFIG_LLMNR_RESOLVER) &&
ctx->servers[idx].is_llmnr) {
/* We only use 5355 as a default port
* if LLMNR support is enabled. User can
* override this by defining the port
* in config file.
*/
net_sin(addr)->sin_port = htons(5355);
} else {
net_sin(addr)->sin_port = htons(53);
}
}
} else {
ctx->servers[idx].is_mdns = server_is_mdns(AF_INET6, addr);
if (!ctx->servers[idx].is_mdns) {
ctx->servers[idx].is_llmnr =
server_is_llmnr(AF_INET6, addr);
}
if (net_sin6(addr)->sin6_port == 0U) {
if (IS_ENABLED(CONFIG_MDNS_RESOLVER) &&
ctx->servers[idx].is_mdns) {
net_sin6(addr)->sin6_port = htons(5353);
} else if (IS_ENABLED(CONFIG_LLMNR_RESOLVER) &&
ctx->servers[idx].is_llmnr) {
net_sin6(addr)->sin6_port = htons(5355);
} else {
net_sin6(addr)->sin6_port = htons(53);
}
}
}
}
int dns_resolve_init(struct dns_resolve_context *ctx, const char *servers[],
const struct sockaddr *servers_sa[])
{
#if defined(CONFIG_NET_IPV6)
struct sockaddr_in6 local_addr6 = {
.sin6_family = AF_INET6,
.sin6_port = 0,
};
#endif
#if defined(CONFIG_NET_IPV4)
struct sockaddr_in local_addr4 = {
.sin_family = AF_INET,
.sin_port = 0,
};
#endif
struct sockaddr *local_addr = NULL;
socklen_t addr_len = 0;
int i = 0, idx = 0;
struct net_if *iface;
int ret, count;
if (!ctx) {
return -ENOENT;
}
if (ctx->is_used) {
ret = -ENOTEMPTY;
goto fail;
}
(void)memset(ctx, 0, sizeof(*ctx));
(void)k_mutex_init(&ctx->lock);
if (servers) {
for (i = 0; idx < SERVER_COUNT && servers[i]; i++) {
struct sockaddr *addr = &ctx->servers[idx].dns_server;
(void)memset(addr, 0, sizeof(*addr));
ret = net_ipaddr_parse(servers[i], strlen(servers[i]),
addr);
if (!ret) {
continue;
}
dns_postprocess_server(ctx, idx);
NET_DBG("[%d] %s%s%s", i, log_strdup(servers[i]),
IS_ENABLED(CONFIG_MDNS_RESOLVER) ?
(ctx->servers[i].is_mdns ? " mDNS" : "") : "",
IS_ENABLED(CONFIG_LLMNR_RESOLVER) ?
(ctx->servers[i].is_llmnr ?
" LLMNR" : "") : "");
idx++;
}
}
if (servers_sa) {
for (i = 0; idx < SERVER_COUNT && servers_sa[i]; i++) {
memcpy(&ctx->servers[idx].dns_server, servers_sa[i],
sizeof(ctx->servers[idx].dns_server));
dns_postprocess_server(ctx, idx);
idx++;
}
}
for (i = 0, count = 0;
i < SERVER_COUNT && ctx->servers[i].dns_server.sa_family; i++) {
if (ctx->servers[i].dns_server.sa_family == AF_INET6) {
#if defined(CONFIG_NET_IPV6)
local_addr = (struct sockaddr *)&local_addr6;
addr_len = sizeof(struct sockaddr_in6);
if (IS_ENABLED(CONFIG_MDNS_RESOLVER) &&
ctx->servers[i].is_mdns) {
local_addr6.sin6_port = htons(5353);
}
#else
continue;
#endif
}
if (ctx->servers[i].dns_server.sa_family == AF_INET) {
#if defined(CONFIG_NET_IPV4)
local_addr = (struct sockaddr *)&local_addr4;
addr_len = sizeof(struct sockaddr_in);
if (IS_ENABLED(CONFIG_MDNS_RESOLVER) &&
ctx->servers[i].is_mdns) {
local_addr4.sin_port = htons(5353);
}
#else
continue;
#endif
}
if (!local_addr) {
NET_DBG("Local address not set");
ret = -EAFNOSUPPORT;
goto fail;
}
ret = net_context_get(ctx->servers[i].dns_server.sa_family,
SOCK_DGRAM, IPPROTO_UDP,
&ctx->servers[i].net_ctx);
if (ret < 0) {
NET_DBG("Cannot get net_context (%d)", ret);
goto fail;
}
ret = net_context_bind(ctx->servers[i].net_ctx,
local_addr, addr_len);
if (ret < 0) {
NET_DBG("Cannot bind DNS context (%d)", ret);
goto fail;
}
iface = net_context_get_iface(ctx->servers[i].net_ctx);
if (IS_ENABLED(CONFIG_NET_MGMT_EVENT_INFO)) {
net_mgmt_event_notify_with_info(
NET_EVENT_DNS_SERVER_ADD,
iface, (void *)&ctx->servers[i].dns_server,
sizeof(struct sockaddr));
} else {
net_mgmt_event_notify(NET_EVENT_DNS_SERVER_ADD, iface);
}
#if defined(CONFIG_NET_IPV6)
local_addr6.sin6_port = 0;
#endif
#if defined(CONFIG_NET_IPV4)
local_addr4.sin_port = 0;
#endif
count++;
}
if (count == 0) {
/* No servers defined */
NET_DBG("No DNS servers defined.");
ret = -EINVAL;
goto fail;
}
ctx->is_used = true;
ctx->buf_timeout = DNS_BUF_TIMEOUT;
ret = 0;
fail:
return ret;
}
/* Check whether a slot is available for use, or optionally whether it can be
* reclaimed.
*
* @param pending_query the query slot in question
*
* @param reclaim_if_available if the slot is marked in use, but the query has
* been completed and the work item is no longer pending, complete the release
* of the slot.
*
* @return true if and only if the slot can be used for a new query.
*/
static inline bool check_query_active(struct dns_pending_query *pending_query,
bool reclaim_if_available)
{
int ret = false;
if (pending_query->cb != NULL) {
ret = true;
if (reclaim_if_available
&& pending_query->query == NULL
&& k_work_delayable_busy_get(&pending_query->timer) == 0) {
pending_query->cb = NULL;
ret = false;
}
}
return ret;
}
/* Must be invoked with context lock held */
static inline int get_cb_slot(struct dns_resolve_context *ctx)
{
int i;
for (i = 0; i < CONFIG_DNS_NUM_CONCUR_QUERIES; i++) {
if (!check_query_active(&ctx->queries[i], true)) {
return i;
}
}
return -ENOENT;
}
/* Invoke the callback associated with a query slot, if still relevant.
*
* Must be invoked with context lock held.
*
* @param status the query status value
* @param info the query result structure
* @param pending_query the query slot that will provide the callback
**/
static inline void invoke_query_callback(int status,
struct dns_addrinfo *info,
struct dns_pending_query *pending_query)
{
/* Only notify if the slot is neither released nor in the process of
* being released.
*/
if (pending_query->query != NULL) {
pending_query->cb(status, info, pending_query->user_data);
}
}
/* Release a query slot reserved by get_cb_slot().
*
* Must be invoked with context lock held.
*
* @param pending_query the query slot to be released
*/
static void release_query(struct dns_pending_query *pending_query)
{
int busy = k_work_cancel_delayable(&pending_query->timer);
/* If the work item is no longer pending we're done. */
if (busy == 0) {
/* All done. */
pending_query->cb = NULL;
} else {
/* Work item is still pending. Set a secondary condition that
* can be checked by get_cb_slot() to complete release of the
* slot once the work item has been confirmed to be completed.
*/
pending_query->query = NULL;
}
}
/* Must be invoked with context lock held */
static inline int get_slot_by_id(struct dns_resolve_context *ctx,
uint16_t dns_id,
uint16_t query_hash)
{
int i;
for (i = 0; i < CONFIG_DNS_NUM_CONCUR_QUERIES; i++) {
if (check_query_active(&ctx->queries[i], false) &&
ctx->queries[i].id == dns_id &&
(query_hash == 0 ||
ctx->queries[i].query_hash == query_hash)) {
return i;
}
}
return -ENOENT;
}
/* Unit test needs to be able to call this function */
#if !defined(CONFIG_NET_TEST)
static
#endif
int dns_validate_msg(struct dns_resolve_context *ctx,
struct dns_msg_t *dns_msg,
uint16_t *dns_id,
int *query_idx,
struct net_buf *dns_cname,
uint16_t *query_hash)
{
struct dns_addrinfo info = { 0 };
uint32_t ttl; /* RR ttl, so far it is not passed to caller */
uint8_t *src, *addr;
const char *query_name;
int address_size;
/* index that points to the current answer being analyzed */
int answer_ptr;
int items;
int server_idx;
int ret = 0;
/* Make sure that we can read DNS id, flags and rcode */
if (dns_msg->msg_size < (sizeof(*dns_id) + sizeof(uint16_t))) {
ret = DNS_EAI_FAIL;
goto quit;
}
/* The dns_unpack_response_header() has design flaw as it expects
* dns id to be given instead of returning the id to the caller.
* In our case we would like to get it returned instead so that we
* can match the DNS query that we sent. When dns_read() is called,
* we do not know what the DNS id is yet.
*/
*dns_id = dns_unpack_header_id(dns_msg->msg);
if (dns_header_rcode(dns_msg->msg) == DNS_HEADER_REFUSED) {
ret = DNS_EAI_FAIL;
goto quit;
}
/* We might receive a query while we are waiting for a response, in that
* case we just ignore the query instead of making the resolving fail.
*/
if (dns_header_qr(dns_msg->msg) == DNS_QUERY) {
ret = 0;
goto quit;
}
ret = dns_unpack_response_header(dns_msg, *dns_id);
if (ret < 0) {
ret = DNS_EAI_FAIL;
goto quit;
}
if (dns_header_qdcount(dns_msg->msg) != 1) {
/* For mDNS (when dns_id == 0) the query count is 0 */
if (*dns_id > 0) {
ret = DNS_EAI_FAIL;
goto quit;
}
}
ret = dns_unpack_response_query(dns_msg);
if (ret < 0) {
/* Check mDNS like above */
if (*dns_id > 0) {
ret = DNS_EAI_FAIL;
goto quit;
}
/* mDNS responses to do not have the query part so the
* answer starts immediately after the header.
*/
dns_msg->answer_offset = dns_msg->query_offset;
}
/* Because in mDNS the DNS id is set to 0 and must be ignored
* on reply, we need to figure out the answer in order to find
* the proper query. To simplify things, the normal DNS responses
* are handled the same way.
*/
answer_ptr = DNS_QUERY_POS;
items = 0;
server_idx = 0;
while (server_idx < dns_header_ancount(dns_msg->msg)) {
ret = dns_unpack_answer(dns_msg, answer_ptr, &ttl);
if (ret < 0) {
ret = DNS_EAI_FAIL;
goto quit;
}
switch (dns_msg->response_type) {
case DNS_RESPONSE_IP:
if (*query_idx >= 0) {
goto query_known;
}
query_name = dns_msg->msg + dns_msg->query_offset;
/* Add \0 and query type (A or AAAA) to the hash */
*query_hash = crc16_ansi(query_name,
strlen(query_name) + 1 + 2);
*query_idx = get_slot_by_id(ctx, *dns_id, *query_hash);
if (*query_idx < 0) {
ret = DNS_EAI_SYSTEM;
goto quit;
}
if (ctx->queries[*query_idx].query_type ==
DNS_QUERY_TYPE_A) {
if (net_sin(&info.ai_addr)->sin_family ==
AF_INET6) {
ret = DNS_EAI_ADDRFAMILY;
goto quit;
}
address_size = DNS_IPV4_LEN;
addr = (uint8_t *)&net_sin(&info.ai_addr)->
sin_addr;
info.ai_family = AF_INET;
info.ai_addr.sa_family = AF_INET;
info.ai_addrlen = sizeof(struct sockaddr_in);
} else if (ctx->queries[*query_idx].query_type ==
DNS_QUERY_TYPE_AAAA) {
if (net_sin6(&info.ai_addr)->sin6_family ==
AF_INET) {
ret = DNS_EAI_ADDRFAMILY;
goto quit;
}
/* We cannot resolve IPv6 address if IPv6 is
* disabled. The reason being that
* "struct sockaddr" does not have enough space
* for IPv6 address in that case.
*/
#if defined(CONFIG_NET_IPV6)
address_size = DNS_IPV6_LEN;
addr = (uint8_t *)&net_sin6(&info.ai_addr)->
sin6_addr;
info.ai_family = AF_INET6;
info.ai_addr.sa_family = AF_INET6;
info.ai_addrlen = sizeof(struct sockaddr_in6);
#else
ret = DNS_EAI_FAMILY;
goto quit;
#endif
} else {
ret = DNS_EAI_FAMILY;
goto quit;
}
if (dns_msg->response_length < address_size) {
/* it seems this is a malformed message */
ret = DNS_EAI_FAIL;
goto quit;
}
if ((dns_msg->response_position + address_size) >
dns_msg->msg_size) {
/* Too short message */
ret = DNS_EAI_FAIL;
goto quit;
}
src = dns_msg->msg + dns_msg->response_position;
memcpy(addr, src, address_size);
query_known:
invoke_query_callback(DNS_EAI_INPROGRESS, &info,
&ctx->queries[*query_idx]);
items++;
break;
case DNS_RESPONSE_CNAME_NO_IP:
/* Instead of using the QNAME at DNS_QUERY_POS,
* we will use this CNAME
*/
answer_ptr = dns_msg->response_position;
break;
default:
ret = DNS_EAI_FAIL;
goto quit;
}
/* Update the answer offset to point to the next RR (answer) */
dns_msg->answer_offset += dns_msg->response_position -
dns_msg->answer_offset;
dns_msg->answer_offset += dns_msg->response_length;
server_idx++;
}
if (*query_idx < 0) {
/* If the query_idx is still unknown, try to get it here
* and hope it is found.
*/
query_name = dns_msg->msg + dns_msg->query_offset;
*query_hash = crc16_ansi(query_name,
strlen(query_name) + 1 + 2);
*query_idx = get_slot_by_id(ctx, *dns_id, *query_hash);
if (*query_idx < 0) {
ret = DNS_EAI_SYSTEM;
goto quit;
}
}
/* No IP addresses were found, so we take the last CNAME to generate
* another query. Number of additional queries is controlled via Kconfig
*/
if (items == 0) {
if (dns_msg->response_type == DNS_RESPONSE_CNAME_NO_IP) {
uint16_t pos = dns_msg->response_position;
/* The dns_cname should always be set. As a special
* case, it might not be set for unit tests that call
* this function directly.
*/
if (dns_cname) {
ret = dns_copy_qname(dns_cname->data,
&dns_cname->len,
dns_cname->size,
dns_msg, pos);
if (ret < 0) {
ret = DNS_EAI_SYSTEM;
goto quit;
}
}
ret = DNS_EAI_AGAIN;
goto quit;
}
}
if (items == 0) {
ret = DNS_EAI_NODATA;
} else {
ret = DNS_EAI_ALLDONE;
}
quit:
return ret;
}
/* Must be invoked with context lock held */
static int dns_read(struct dns_resolve_context *ctx,
struct net_pkt *pkt,
struct net_buf *dns_data,
uint16_t *dns_id,
struct net_buf *dns_cname,
uint16_t *query_hash)
{
/* Helper struct to track the dns msg received from the server */
struct dns_msg_t dns_msg;
int data_len;
int ret;
int query_idx = -1;
data_len = MIN(net_pkt_remaining_data(pkt), DNS_RESOLVER_MAX_BUF_SIZE);
/* TODO: Instead of this temporary copy, just use the net_pkt directly.
*/
ret = net_pkt_read(pkt, dns_data->data, data_len);
if (ret < 0) {
ret = DNS_EAI_MEMORY;
goto quit;
}
dns_msg.msg = dns_data->data;
dns_msg.msg_size = data_len;
ret = dns_validate_msg(ctx, &dns_msg, dns_id, &query_idx,
dns_cname, query_hash);
if (ret == DNS_EAI_AGAIN) {
goto finished;
}
if (ret < 0) {
goto quit;
}
invoke_query_callback(ret, NULL, &ctx->queries[query_idx]);
/* Marks the end of the results */
release_query(&ctx->queries[query_idx]);
net_pkt_unref(pkt);
return 0;
finished:
dns_resolve_cancel_with_name(ctx, *dns_id,
ctx->queries[query_idx].query,
ctx->queries[query_idx].query_type);
quit:
net_pkt_unref(pkt);
return ret;
}
static void cb_recv(struct net_context *net_ctx,
struct net_pkt *pkt,
union net_ip_header *ip_hdr,
union net_proto_header *proto_hdr,
int status,
void *user_data)
{
struct dns_resolve_context *ctx = user_data;
struct net_buf *dns_cname = NULL;
struct net_buf *dns_data = NULL;
uint16_t query_hash = 0U;
uint16_t dns_id = 0U;
int ret, i;
ARG_UNUSED(net_ctx);
k_mutex_lock(&ctx->lock, K_FOREVER);
if (status) {
ret = DNS_EAI_SYSTEM;
goto quit;
}
dns_data = net_buf_alloc(&dns_msg_pool, ctx->buf_timeout);
if (!dns_data) {
ret = DNS_EAI_MEMORY;
goto quit;
}
dns_cname = net_buf_alloc(&dns_qname_pool, ctx->buf_timeout);
if (!dns_cname) {
ret = DNS_EAI_MEMORY;
goto quit;
}
ret = dns_read(ctx, pkt, dns_data, &dns_id, dns_cname, &query_hash);
if (!ret) {
/* We called the callback already in dns_read() if there
* was no errors.
*/
goto free_buf;
}
/* Query again if we got CNAME */
if (ret == DNS_EAI_AGAIN) {
int failure = 0;
int j;
i = get_slot_by_id(ctx, dns_id, query_hash);
if (i < 0) {
goto free_buf;
}
for (j = 0; j < SERVER_COUNT; j++) {
if (!ctx->servers[j].net_ctx) {
continue;
}
ret = dns_write(ctx, j, i, dns_data, dns_cname, 0);
if (ret < 0) {
failure++;
}
}
if (failure) {
NET_DBG("DNS cname query failed %d times", failure);
if (failure == j) {
ret = DNS_EAI_SYSTEM;
goto quit;
}
}
goto free_buf;
}
quit:
i = get_slot_by_id(ctx, dns_id, query_hash);
if (i < 0) {
goto free_buf;
}
invoke_query_callback(ret, NULL, &ctx->queries[i]);
/* Marks the end of the results */
release_query(&ctx->queries[i]);
free_buf:
if (dns_data) {
net_buf_unref(dns_data);
}
if (dns_cname) {
net_buf_unref(dns_cname);
}
k_mutex_unlock(&ctx->lock);
}
/* Must be invoked with context lock held */
static int dns_write(struct dns_resolve_context *ctx,
int server_idx,
int query_idx,
struct net_buf *dns_data,
struct net_buf *dns_qname,
int hop_limit)
{
enum dns_query_type query_type;
struct net_context *net_ctx;
struct sockaddr *server;
int server_addr_len;
uint16_t dns_id;
int ret;
net_ctx = ctx->servers[server_idx].net_ctx;
server = &ctx->servers[server_idx].dns_server;
dns_id = ctx->queries[query_idx].id;
query_type = ctx->queries[query_idx].query_type;
ret = dns_msg_pack_query(dns_data->data, &dns_data->len, dns_data->size,
dns_qname->data, dns_qname->len, dns_id,
(enum dns_rr_type)query_type);
if (ret < 0) {
return -EINVAL;
}
/* Add \0 and query type (A or AAAA) to the hash. Note that
* the dns_qname->len contains the length of \0
*/
ctx->queries[query_idx].query_hash =
crc16_ansi(dns_data->data + DNS_MSG_HEADER_SIZE,
dns_qname->len + 2);
if (IS_ENABLED(CONFIG_NET_IPV6) &&
net_context_get_family(net_ctx) == AF_INET6) {
net_context_set_ipv6_hop_limit(net_ctx, hop_limit);
} else if (IS_ENABLED(CONFIG_NET_IPV4) &&
net_context_get_family(net_ctx) == AF_INET) {
net_context_set_ipv4_ttl(net_ctx, hop_limit);
}
ret = net_context_recv(net_ctx, cb_recv, K_NO_WAIT, ctx);
if (ret < 0 && ret != -EALREADY) {
NET_DBG("Could not receive from socket (%d)", ret);
return ret;
}
if (server->sa_family == AF_INET) {
server_addr_len = sizeof(struct sockaddr_in);
} else {
server_addr_len = sizeof(struct sockaddr_in6);
}
ret = k_work_reschedule(&ctx->queries[query_idx].timer,
ctx->queries[query_idx].timeout);
if (ret < 0) {
NET_DBG("[%u] cannot submit work to server idx %d for id %u "
"ret %d", query_idx, server_idx, dns_id, ret);
return ret;
}
NET_DBG("[%u] submitting work to server idx %d for id %u "
"hash %u", query_idx, server_idx, dns_id,
ctx->queries[query_idx].query_hash);
ret = net_context_sendto(net_ctx, dns_data->data, dns_data->len,
server, server_addr_len, NULL,
K_NO_WAIT, NULL);
if (ret < 0) {
NET_DBG("Cannot send query (%d)", ret);
return ret;
}
return 0;
}
static int dns_resolve_cancel_with_hash(struct dns_resolve_context *ctx,
uint16_t dns_id,
uint16_t query_hash,
const char *query_name)
{
int ret;
int i;
k_mutex_lock(&ctx->lock, K_FOREVER);
i = get_slot_by_id(ctx, dns_id, query_hash);
if (i < 0) {
ret = -ENOENT;
goto fail;
}
NET_DBG("Cancelling DNS req %u (name %s type %d hash %u)", dns_id,
log_strdup(query_name), ctx->queries[i].query_type,
query_hash);
invoke_query_callback(DNS_EAI_CANCELED, NULL, &ctx->queries[i]);
release_query(&ctx->queries[i]);
fail:
k_mutex_unlock(&ctx->lock);
return 0;
}
int dns_resolve_cancel_with_name(struct dns_resolve_context *ctx,
uint16_t dns_id,
const char *query_name,
enum dns_query_type query_type)
{
uint16_t query_hash = 0;
if (query_name) {
struct net_buf *buf;
uint16_t len;
int ret;
/* Use net_buf as a temporary buffer to store the packed
* DNS name.
*/
buf = net_buf_alloc(&dns_msg_pool, ctx->buf_timeout);
if (!buf) {
return -ENOMEM;
}
ret = dns_msg_pack_qname(&len, buf->data, buf->size,
query_name);
if (ret >= 0) {
/* If the query string + \0 + query type (A or AAAA)
* does not fit the tmp buf, then bail out
*/
if ((len + 2) > buf->size) {
net_buf_unref(buf);
return -ENOMEM;
}
net_buf_add(buf, len);
net_buf_add_be16(buf, query_type);
query_hash = crc16_ansi(buf->data, len + 2);
}
net_buf_unref(buf);
if (ret < 0) {
return ret;
}
}
return dns_resolve_cancel_with_hash(ctx, dns_id, query_hash,
query_name);
}
int dns_resolve_cancel(struct dns_resolve_context *ctx, uint16_t dns_id)
{
return dns_resolve_cancel_with_name(ctx, dns_id, NULL, 0);
}
static void query_timeout(struct k_work *work)
{
struct dns_pending_query *pending_query =
CONTAINER_OF(work, struct dns_pending_query, timer);
int ret;
/* We have to take the lock as we're inspecting protected content
* associated with the query. But don't block the system work queue:
* if the lock can't be taken immediately, reschedule the work item to
* be run again after everything else has had a chance.
*
* Note that it's OK to use the k_work API on the delayable work
* without holding the lock: it's only the associated state in the
* containing structure that must be protected.
*/
ret = k_mutex_lock(&pending_query->ctx->lock, K_NO_WAIT);
if (ret != 0) {
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
k_work_reschedule(dwork, K_NO_WAIT);
return;
}
NET_DBG("Query timeout DNS req %u type %d hash %u", pending_query->id,
pending_query->query_type, pending_query->query_hash);
/* The resolve cancel will invoke release_query(), but release will
* not be completed because the work item is still pending. Instead
* the release will be completed when check_query_active() confirms
* the work item is no longer active.
*/
(void)dns_resolve_cancel_with_hash(pending_query->ctx,
pending_query->id,
pending_query->query_hash,
pending_query->query);
k_mutex_unlock(&pending_query->ctx->lock);
}
int dns_resolve_name(struct dns_resolve_context *ctx,
const char *query,
enum dns_query_type type,
uint16_t *dns_id,
dns_resolve_cb_t cb,
void *user_data,
int32_t timeout)
{
k_timeout_t tout;
struct net_buf *dns_data = NULL;
struct net_buf *dns_qname = NULL;
struct sockaddr addr;
int ret, i = -1, j = 0;
int failure = 0;
bool mdns_query = false;
uint8_t hop_limit;
if (!ctx || !ctx->is_used || !query || !cb) {
return -EINVAL;
}
tout = SYS_TIMEOUT_MS(timeout);
/* Timeout cannot be 0 as we cannot resolve name that fast.
*/
if (K_TIMEOUT_EQ(tout, K_NO_WAIT)) {
return -EINVAL;
}
ret = net_ipaddr_parse(query, strlen(query), &addr);
if (ret) {
/* The query name was already in numeric form, no
* need to continue further.
*/
struct dns_addrinfo info = { 0 };
if (type == DNS_QUERY_TYPE_A) {
if (net_sin(&addr)->sin_family == AF_INET6) {
return -EPFNOSUPPORT;
}
memcpy(net_sin(&info.ai_addr), net_sin(&addr),
sizeof(struct sockaddr_in));
info.ai_family = AF_INET;
info.ai_addr.sa_family = AF_INET;
info.ai_addrlen = sizeof(struct sockaddr_in);
} else if (type == DNS_QUERY_TYPE_AAAA) {
/* We do not support AI_V4MAPPED atm, so if the user
* asks an IPv6 address but it is an IPv4 one, then
* return an error. Note that getaddrinfo() will swap
* the error to EINVAL, the EPFNOSUPPORT is returned
* here so that we can find it easily.
*/
if (net_sin(&addr)->sin_family == AF_INET) {
return -EPFNOSUPPORT;
}
#if defined(CONFIG_NET_IPV6)
memcpy(net_sin6(&info.ai_addr), net_sin6(&addr),
sizeof(struct sockaddr_in6));
info.ai_family = AF_INET6;
info.ai_addr.sa_family = AF_INET6;
info.ai_addrlen = sizeof(struct sockaddr_in6);
#else
return -EAFNOSUPPORT;
#endif
} else {
goto try_resolve;
}
cb(DNS_EAI_INPROGRESS, &info, user_data);
cb(DNS_EAI_ALLDONE, NULL, user_data);
return 0;
}
try_resolve:
k_mutex_lock(&ctx->lock, K_FOREVER);
i = get_cb_slot(ctx);
if (i < 0) {
ret = -EAGAIN;
goto fail;
}
ctx->queries[i].cb = cb;
ctx->queries[i].timeout = tout;
ctx->queries[i].query = query;
ctx->queries[i].query_type = type;
ctx->queries[i].user_data = user_data;
ctx->queries[i].ctx = ctx;
ctx->queries[i].query_hash = 0;
k_work_init_delayable(&ctx->queries[i].timer, query_timeout);
dns_data = net_buf_alloc(&dns_msg_pool, ctx->buf_timeout);
if (!dns_data) {
ret = -ENOMEM;
goto quit;
}
dns_qname = net_buf_alloc(&dns_qname_pool, ctx->buf_timeout);
if (!dns_qname) {
ret = -ENOMEM;
goto quit;
}
ret = dns_msg_pack_qname(&dns_qname->len, dns_qname->data,
DNS_MAX_NAME_LEN, ctx->queries[i].query);
if (ret < 0) {
goto quit;
}
ctx->queries[i].id = sys_rand32_get();
/* If mDNS is enabled, then send .local queries only to multicast
* address. For mDNS the id should be set to 0, see RFC 6762 ch. 18.1
* for details.
*/
if (IS_ENABLED(CONFIG_MDNS_RESOLVER)) {
const char *ptr = strrchr(query, '.');
/* Note that we memcmp() the \0 here too */
if (ptr && !memcmp(ptr, (const void *){ ".local" }, 7)) {
mdns_query = true;
ctx->queries[i].id = 0;
}
}
/* Do this immediately after calculating the Id so that the unit
* test will work properly.
*/
if (dns_id) {
*dns_id = ctx->queries[i].id;
NET_DBG("DNS id will be %u", *dns_id);
}
for (j = 0; j < SERVER_COUNT; j++) {
hop_limit = 0U;
if (!ctx->servers[j].net_ctx) {
continue;
}
/* If mDNS is enabled, then send .local queries only to
* a well known multicast mDNS server address.
*/
if (IS_ENABLED(CONFIG_MDNS_RESOLVER) && mdns_query &&
!ctx->servers[j].is_mdns) {
continue;
}
/* If llmnr is enabled, then all the queries are sent to
* LLMNR multicast address unless it is a mDNS query.
*/
if (!mdns_query && IS_ENABLED(CONFIG_LLMNR_RESOLVER)) {
if (!ctx->servers[j].is_llmnr) {
continue;
}
hop_limit = 1U;
}
ret = dns_write(ctx, j, i, dns_data, dns_qname, hop_limit);
if (ret < 0) {
failure++;
continue;
}
/* Do one concurrent query only for each name resolve.
* TODO: Change the i (query index) to do multiple concurrent
* to each server.
*/
break;
}
if (failure) {
NET_DBG("DNS query failed %d times", failure);
if (failure == j) {
ret = -ENOENT;
goto quit;
}
}
ret = 0;
quit:
if (ret < 0) {
if (i >= 0) {
release_query(&ctx->queries[i]);
}
if (dns_id) {
*dns_id = 0U;
}
}
if (dns_data) {
net_buf_unref(dns_data);
}
if (dns_qname) {
net_buf_unref(dns_qname);
}
fail:
k_mutex_unlock(&ctx->lock);
return ret;
}
int dns_resolve_close(struct dns_resolve_context *ctx)
{
int i;
if (!ctx->is_used) {
return -ENOENT;
}
k_mutex_lock(&ctx->lock, K_FOREVER);
for (i = 0; i < SERVER_COUNT; i++) {
if (ctx->servers[i].net_ctx) {
struct net_if *iface;
iface = net_context_get_iface(ctx->servers[i].net_ctx);
if (IS_ENABLED(CONFIG_NET_MGMT_EVENT_INFO)) {
net_mgmt_event_notify_with_info(
NET_EVENT_DNS_SERVER_DEL,
iface,
(void *)&ctx->servers[i].dns_server,
sizeof(struct sockaddr));
} else {
net_mgmt_event_notify(NET_EVENT_DNS_SERVER_DEL,
iface);
}
net_context_put(ctx->servers[i].net_ctx);
}
}
ctx->is_used = false;
k_mutex_unlock(&ctx->lock);
return 0;
}
struct dns_resolve_context *dns_resolve_get_default(void)
{
return &dns_default_ctx;
}
void dns_init_resolver(void)
{
#if defined(CONFIG_DNS_SERVER_IP_ADDRESSES)
static const char *dns_servers[SERVER_COUNT + 1];
int count = DNS_SERVER_COUNT;
int ret;
if (count > 5) {
count = 5;
}
switch (count) {
#if DNS_SERVER_COUNT > 4
case 5:
dns_servers[4] = CONFIG_DNS_SERVER5;
__fallthrough;
#endif
#if DNS_SERVER_COUNT > 3
case 4:
dns_servers[3] = CONFIG_DNS_SERVER4;
__fallthrough;
#endif
#if DNS_SERVER_COUNT > 2
case 3:
dns_servers[2] = CONFIG_DNS_SERVER3;
__fallthrough;
#endif
#if DNS_SERVER_COUNT > 1
case 2:
dns_servers[1] = CONFIG_DNS_SERVER2;
__fallthrough;
#endif
#if DNS_SERVER_COUNT > 0
case 1:
dns_servers[0] = CONFIG_DNS_SERVER1;
__fallthrough;
#endif
case 0:
break;
}
#if defined(CONFIG_MDNS_RESOLVER) && (MDNS_SERVER_COUNT > 0)
#if defined(CONFIG_NET_IPV6) && defined(CONFIG_NET_IPV4)
dns_servers[DNS_SERVER_COUNT + 1] = MDNS_IPV6_ADDR;
dns_servers[DNS_SERVER_COUNT] = MDNS_IPV4_ADDR;
#else /* CONFIG_NET_IPV6 && CONFIG_NET_IPV4 */
#if defined(CONFIG_NET_IPV6)
dns_servers[DNS_SERVER_COUNT] = MDNS_IPV6_ADDR;
#endif
#if defined(CONFIG_NET_IPV4)
dns_servers[DNS_SERVER_COUNT] = MDNS_IPV4_ADDR;
#endif
#endif /* CONFIG_NET_IPV6 && CONFIG_NET_IPV4 */
#endif /* MDNS_RESOLVER && MDNS_SERVER_COUNT > 0 */
#if defined(CONFIG_LLMNR_RESOLVER) && (LLMNR_SERVER_COUNT > 0)
#if defined(CONFIG_NET_IPV6) && defined(CONFIG_NET_IPV4)
dns_servers[DNS_SERVER_COUNT + MDNS_SERVER_COUNT + 1] =
LLMNR_IPV6_ADDR;
dns_servers[DNS_SERVER_COUNT + MDNS_SERVER_COUNT] = LLMNR_IPV4_ADDR;
#else /* CONFIG_NET_IPV6 && CONFIG_NET_IPV4 */
#if defined(CONFIG_NET_IPV6)
dns_servers[DNS_SERVER_COUNT + MDNS_SERVER_COUNT] = LLMNR_IPV6_ADDR;
#endif
#if defined(CONFIG_NET_IPV4)
dns_servers[DNS_SERVER_COUNT + MDNS_SERVER_COUNT] = LLMNR_IPV4_ADDR;
#endif
#endif /* CONFIG_NET_IPV6 && CONFIG_NET_IPV4 */
#endif /* LLMNR_RESOLVER && LLMNR_SERVER_COUNT > 0 */
dns_servers[SERVER_COUNT] = NULL;
ret = dns_resolve_init(dns_resolve_get_default(), dns_servers, NULL);
if (ret < 0) {
NET_WARN("Cannot initialize DNS resolver (%d)", ret);
}
#endif
}