zephyr/drivers/sensor/ccs811/ccs811.c
Christian Taedcke b0b20112e8 drivers: sensor: ccs811: fix sw reset delay
Before this change, the sw reset did not work after power-on, because
I2C commands are only accepted after 20msec (t_START after power-on).

Now the 20msec delay is moved before performing the reset to ensure that
the SW reset command can be executed. An additional 2msec delay is added
after the reset (see datasheet t_START after reset).

Signed-off-by: Christian Taedcke <christian.taedcke@lemonbeat.com>
2021-03-25 16:58:42 -05:00

602 lines
14 KiB
C

/*
* Copyright (c) 2018 Peter Bigot Consulting, LLC
* Copyright (c) 2018 Linaro Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ams_ccs811
#include <device.h>
#include <drivers/gpio.h>
#include <drivers/i2c.h>
#include <kernel.h>
#include <sys/byteorder.h>
#include <sys/util.h>
#include <drivers/sensor.h>
#include <sys/__assert.h>
#include <logging/log.h>
#include "ccs811.h"
#define WAKE_PIN DT_INST_GPIO_PIN(0, wake_gpios)
#define RESET_PIN DT_INST_GPIO_PIN(0, reset_gpios)
LOG_MODULE_REGISTER(CCS811, CONFIG_SENSOR_LOG_LEVEL);
#if DT_INST_NODE_HAS_PROP(0, wake_gpios)
static void set_wake(struct ccs811_data *drv_data, bool enable)
{
gpio_pin_set(drv_data->wake_gpio, WAKE_PIN, enable);
if (enable) {
k_busy_wait(50); /* t_WAKE = 50 us */
} else {
k_busy_wait(20); /* t_DWAKE = 20 us */
}
}
#else
#define set_wake(...)
#endif
/* Get STATUS register in low 8 bits, and if ERROR is set put ERROR_ID
* in bits 8..15. These registers are available in both boot and
* application mode.
*/
static int fetch_status(const struct device *i2c)
{
uint8_t status;
int rv;
if (i2c_reg_read_byte(i2c, DT_INST_REG_ADDR(0),
CCS811_REG_STATUS, &status) < 0) {
LOG_ERR("Failed to read Status register");
return -EIO;
}
rv = status;
if (status & CCS811_STATUS_ERROR) {
uint8_t error_id;
if (i2c_reg_read_byte(i2c, DT_INST_REG_ADDR(0),
CCS811_REG_ERROR_ID, &error_id) < 0) {
LOG_ERR("Failed to read ERROR_ID register");
return -EIO;
}
rv |= (error_id << 8);
}
return rv;
}
static inline uint8_t error_from_status(int status)
{
return status >> 8;
}
const struct ccs811_result_type *ccs811_result(const struct device *dev)
{
struct ccs811_data *drv_data = dev->data;
return &drv_data->result;
}
int ccs811_configver_fetch(const struct device *dev,
struct ccs811_configver_type *ptr)
{
struct ccs811_data *drv_data = dev->data;
uint8_t cmd;
int rc;
if (!ptr) {
return -EINVAL;
}
set_wake(drv_data, true);
cmd = CCS811_REG_HW_VERSION;
rc = i2c_write_read(drv_data->i2c, DT_INST_REG_ADDR(0),
&cmd, sizeof(cmd),
&ptr->hw_version, sizeof(ptr->hw_version));
if (rc == 0) {
cmd = CCS811_REG_FW_BOOT_VERSION;
rc = i2c_write_read(drv_data->i2c, DT_INST_REG_ADDR(0),
&cmd, sizeof(cmd),
(uint8_t *)&ptr->fw_boot_version,
sizeof(ptr->fw_boot_version));
ptr->fw_boot_version = sys_be16_to_cpu(ptr->fw_boot_version);
}
if (rc == 0) {
cmd = CCS811_REG_FW_APP_VERSION;
rc = i2c_write_read(drv_data->i2c, DT_INST_REG_ADDR(0),
&cmd, sizeof(cmd),
(uint8_t *)&ptr->fw_app_version,
sizeof(ptr->fw_app_version));
ptr->fw_app_version = sys_be16_to_cpu(ptr->fw_app_version);
}
if (rc == 0) {
LOG_INF("HW %x FW %x APP %x",
ptr->hw_version, ptr->fw_boot_version,
ptr->fw_app_version);
}
set_wake(drv_data, false);
ptr->mode = drv_data->mode & CCS811_MODE_MSK;
return rc;
}
int ccs811_baseline_fetch(const struct device *dev)
{
const uint8_t cmd = CCS811_REG_BASELINE;
struct ccs811_data *drv_data = dev->data;
int rc;
uint16_t baseline;
set_wake(drv_data, true);
rc = i2c_write_read(drv_data->i2c, DT_INST_REG_ADDR(0),
&cmd, sizeof(cmd),
(uint8_t *)&baseline, sizeof(baseline));
set_wake(drv_data, false);
if (rc <= 0) {
rc = baseline;
}
return rc;
}
int ccs811_baseline_update(const struct device *dev,
uint16_t baseline)
{
struct ccs811_data *drv_data = dev->data;
uint8_t buf[1 + sizeof(baseline)];
int rc;
buf[0] = CCS811_REG_BASELINE;
memcpy(buf + 1, &baseline, sizeof(baseline));
set_wake(drv_data, true);
rc = i2c_write(drv_data->i2c, buf, sizeof(buf), DT_INST_REG_ADDR(0));
set_wake(drv_data, false);
return rc;
}
int ccs811_envdata_update(const struct device *dev,
const struct sensor_value *temperature,
const struct sensor_value *humidity)
{
struct ccs811_data *drv_data = dev->data;
int rc;
uint8_t buf[5] = { CCS811_REG_ENV_DATA };
/*
* Environment data are represented in a broken whole/fraction
* system that specified a 9-bit fractional part to represent
* milli-units. Since 1000 is greater than 512, the device
* actually only pays attention to the top bit, treating it as
* indicating 0.5. So we only write the first octet (7-bit
* while plus 1-bit half).
*
* Humidity is simple: scale it by two and round to the
* nearest half. Assume the fractional part is not
* negative.
*/
if (humidity) {
int value = 2 * humidity->val1;
value += (250000 + humidity->val2) / 500000;
if (value < 0) {
value = 0;
} else if (value > (2 * 100)) {
value = 2 * 100;
}
LOG_DBG("HUM %d.%06d becomes %d",
humidity->val1, humidity->val2, value);
buf[1] = value;
} else {
buf[1] = 2 * 50;
}
/*
* Temperature is offset from -25 Cel. Values below minimum
* store as zero. Default is 25 Cel. Again we round to the
* nearest half, complicated by Zephyr's signed representation
* of the fractional part.
*/
if (temperature) {
int value = 2 * temperature->val1;
if (temperature->val2 < 0) {
value += (250000 + temperature->val2) / 500000;
} else {
value += (-250000 + temperature->val2) / 500000;
}
if (value < (2 * -25)) {
value = 0;
} else {
value += 2 * 25;
}
LOG_DBG("TEMP %d.%06d becomes %d",
temperature->val1, temperature->val2, value);
buf[3] = value;
} else {
buf[3] = 2 * (25 + 25);
}
set_wake(drv_data, true);
rc = i2c_write(drv_data->i2c, buf, sizeof(buf), DT_INST_REG_ADDR(0));
set_wake(drv_data, false);
return rc;
}
static int ccs811_sample_fetch(const struct device *dev,
enum sensor_channel chan)
{
struct ccs811_data *drv_data = dev->data;
struct ccs811_result_type *rp = &drv_data->result;
const uint8_t cmd = CCS811_REG_ALG_RESULT_DATA;
int rc;
uint16_t buf[4] = { 0 };
unsigned int status;
set_wake(drv_data, true);
rc = i2c_write_read(drv_data->i2c, DT_INST_REG_ADDR(0),
&cmd, sizeof(cmd),
(uint8_t *)buf, sizeof(buf));
set_wake(drv_data, false);
if (rc < 0) {
return -EIO;
}
rp->co2 = sys_be16_to_cpu(buf[0]);
rp->voc = sys_be16_to_cpu(buf[1]);
status = sys_le16_to_cpu(buf[2]); /* sic */
rp->status = status;
rp->error = error_from_status(status);
rp->raw = sys_be16_to_cpu(buf[3]);
/* APP FW 1.1 does not set DATA_READY, but it does set CO2 to
* zero while it's starting up. Assume a non-zero CO2 with
* old firmware is valid for the purposes of claiming the
* fetch was fresh.
*/
if ((drv_data->app_fw_ver <= 0x11)
&& (rp->co2 != 0)) {
status |= CCS811_STATUS_DATA_READY;
}
return (status & CCS811_STATUS_DATA_READY) ? 0 : -EAGAIN;
}
static int ccs811_channel_get(const struct device *dev,
enum sensor_channel chan,
struct sensor_value *val)
{
struct ccs811_data *drv_data = dev->data;
const struct ccs811_result_type *rp = &drv_data->result;
uint32_t uval;
switch (chan) {
case SENSOR_CHAN_CO2:
val->val1 = rp->co2;
val->val2 = 0;
break;
case SENSOR_CHAN_VOC:
val->val1 = rp->voc;
val->val2 = 0;
break;
case SENSOR_CHAN_VOLTAGE:
/*
* Raw ADC readings are contained in least significant 10 bits
*/
uval = ((rp->raw & CCS811_RAW_VOLTAGE_MSK)
>> CCS811_RAW_VOLTAGE_POS) * CCS811_RAW_VOLTAGE_SCALE;
val->val1 = uval / 1000000U;
val->val2 = uval % 1000000;
break;
case SENSOR_CHAN_CURRENT:
/*
* Current readings are contained in most
* significant 6 bits in microAmps
*/
uval = ((rp->raw & CCS811_RAW_CURRENT_MSK)
>> CCS811_RAW_CURRENT_POS) * CCS811_RAW_CURRENT_SCALE;
val->val1 = uval / 1000000U;
val->val2 = uval % 1000000;
break;
default:
return -ENOTSUP;
}
return 0;
}
static const struct sensor_driver_api ccs811_driver_api = {
#ifdef CONFIG_CCS811_TRIGGER
.attr_set = ccs811_attr_set,
.trigger_set = ccs811_trigger_set,
#endif
.sample_fetch = ccs811_sample_fetch,
.channel_get = ccs811_channel_get,
};
static int switch_to_app_mode(const struct device *i2c)
{
uint8_t buf;
int status;
LOG_DBG("Switching to Application mode...");
status = fetch_status(i2c);
if (status < 0) {
return -EIO;
}
/* Check for the application firmware */
if (!(status & CCS811_STATUS_APP_VALID)) {
LOG_ERR("No Application firmware loaded");
return -EINVAL;
}
/* Check if already in application mode */
if (status & CCS811_STATUS_FW_MODE) {
LOG_DBG("CCS811 Already in application mode");
return 0;
}
buf = CCS811_REG_APP_START;
/* Set the device to application mode */
if (i2c_write(i2c, &buf, 1, DT_INST_REG_ADDR(0)) < 0) {
LOG_ERR("Failed to set Application mode");
return -EIO;
}
k_msleep(1); /* t_APP_START */
status = fetch_status(i2c);
if (status < 0) {
return -EIO;
}
/* Check for application mode */
if (!(status & CCS811_STATUS_FW_MODE)) {
LOG_ERR("Failed to start Application firmware");
return -EINVAL;
}
LOG_DBG("CCS811 Application firmware started!");
return 0;
}
#ifdef CONFIG_CCS811_TRIGGER
int ccs811_mutate_meas_mode(const struct device *dev,
uint8_t set,
uint8_t clear)
{
struct ccs811_data *drv_data = dev->data;
int rc = 0;
uint8_t mode = set | (drv_data->mode & ~clear);
/*
* Changing drive mode of a running system has preconditions.
* Only allow changing the interrupt generation.
*/
if ((set | clear) & ~(CCS811_MODE_DATARDY | CCS811_MODE_THRESH)) {
return -EINVAL;
}
if (mode != drv_data->mode) {
set_wake(drv_data, true);
rc = i2c_reg_write_byte(drv_data->i2c, DT_INST_REG_ADDR(0),
CCS811_REG_MEAS_MODE,
mode);
LOG_DBG("CCS811 meas mode change %02x to %02x got %d",
drv_data->mode, mode, rc);
if (rc < 0) {
LOG_ERR("Failed to set mode");
rc = -EIO;
} else {
drv_data->mode = mode;
rc = 0;
}
set_wake(drv_data, false);
}
return rc;
}
int ccs811_set_thresholds(const struct device *dev)
{
struct ccs811_data *drv_data = dev->data;
const uint8_t buf[5] = {
CCS811_REG_THRESHOLDS,
drv_data->co2_l2m >> 8,
drv_data->co2_l2m,
drv_data->co2_m2h >> 8,
drv_data->co2_m2h,
};
int rc;
set_wake(drv_data, true);
rc = i2c_write(drv_data->i2c, buf, sizeof(buf), DT_INST_REG_ADDR(0));
set_wake(drv_data, false);
return rc;
}
#endif /* CONFIG_CCS811_TRIGGER */
static int ccs811_init(const struct device *dev)
{
struct ccs811_data *drv_data = dev->data;
int ret = 0;
int status;
uint16_t fw_ver;
uint8_t cmd;
uint8_t hw_id;
*drv_data = (struct ccs811_data){ 0 };
drv_data->i2c = device_get_binding(DT_INST_BUS_LABEL(0));
if (drv_data->i2c == NULL) {
LOG_ERR("Failed to get pointer to %s device!",
DT_INST_BUS_LABEL(0));
return -EINVAL;
}
#if DT_INST_NODE_HAS_PROP(0, wake_gpios)
drv_data->wake_gpio = device_get_binding(DT_INST_GPIO_LABEL(0, wake_gpios));
if (drv_data->wake_gpio == NULL) {
LOG_ERR("Failed to get pointer to WAKE device: %s",
DT_INST_GPIO_LABEL(0, wake_gpios));
return -EINVAL;
}
/*
* Wakeup pin should be pulled low before initiating
* any I2C transfer. If it has been tied to GND by
* default, skip this part.
*/
gpio_pin_configure(drv_data->wake_gpio, WAKE_PIN,
GPIO_OUTPUT_INACTIVE
| DT_INST_GPIO_FLAGS(0, wake_gpios));
set_wake(drv_data, true);
k_msleep(1);
#endif
#if DT_INST_NODE_HAS_PROP(0, reset_gpios)
drv_data->reset_gpio = device_get_binding(DT_INST_GPIO_LABEL(0, reset_gpios));
if (drv_data->reset_gpio == NULL) {
LOG_ERR("Failed to get pointer to RESET device: %s",
DT_INST_GPIO_LABEL(0, reset_gpios));
return -EINVAL;
}
gpio_pin_configure(drv_data->reset_gpio, RESET_PIN,
GPIO_OUTPUT_ACTIVE
| DT_INST_GPIO_FLAGS(0, reset_gpios));
k_msleep(1);
#endif
#if DT_INST_NODE_HAS_PROP(0, irq_gpios)
drv_data->irq_gpio = device_get_binding(DT_INST_GPIO_LABEL(0, irq_gpios));
if (drv_data->irq_gpio == NULL) {
LOG_ERR("Failed to get pointer to INT device: %s",
DT_INST_GPIO_LABEL(0, irq_gpios));
return -EINVAL;
}
#endif
k_msleep(20); /* t_START assuming recent power-on */
/* Reset the device. This saves having to deal with detecting
* and validating any errors or configuration inconsistencies
* after a reset that left the device running.
*/
#if DT_INST_NODE_HAS_PROP(0, reset_gpios)
gpio_pin_set(drv_data->reset_gpio, RESET_PIN, 1);
k_busy_wait(15); /* t_RESET */
gpio_pin_set(drv_data->reset_gpio, RESET_PIN, 0);
#else
{
static uint8_t const reset_seq[] = {
0xFF, 0x11, 0xE5, 0x72, 0x8A,
};
if (i2c_write(drv_data->i2c, reset_seq, sizeof(reset_seq),
DT_INST_REG_ADDR(0)) < 0) {
LOG_ERR("Failed to issue SW reset");
ret = -EIO;
goto out;
}
}
#endif
k_msleep(2); /* t_START after reset */
/* Switch device to application mode */
ret = switch_to_app_mode(drv_data->i2c);
if (ret) {
goto out;
}
/* Check Hardware ID */
if (i2c_reg_read_byte(drv_data->i2c, DT_INST_REG_ADDR(0),
CCS811_REG_HW_ID, &hw_id) < 0) {
LOG_ERR("Failed to read Hardware ID register");
ret = -EIO;
goto out;
}
if (hw_id != CCS881_HW_ID) {
LOG_ERR("Hardware ID mismatch!");
ret = -EINVAL;
goto out;
}
/* Check application firmware version (first byte) */
cmd = CCS811_REG_FW_APP_VERSION;
if (i2c_write_read(drv_data->i2c, DT_INST_REG_ADDR(0),
&cmd, sizeof(cmd),
&fw_ver, sizeof(fw_ver)) < 0) {
LOG_ERR("Failed to read App Firmware Version register");
ret = -EIO;
goto out;
}
fw_ver = sys_be16_to_cpu(fw_ver);
LOG_INF("App FW %04x", fw_ver);
drv_data->app_fw_ver = fw_ver >> 8U;
/* Configure measurement mode */
uint8_t meas_mode = CCS811_MODE_IDLE;
#ifdef CONFIG_CCS811_DRIVE_MODE_1
meas_mode = CCS811_MODE_IAQ_1SEC;
#elif defined(CONFIG_CCS811_DRIVE_MODE_2)
meas_mode = CCS811_MODE_IAQ_10SEC;
#elif defined(CONFIG_CCS811_DRIVE_MODE_3)
meas_mode = CCS811_MODE_IAQ_60SEC;
#elif defined(CONFIG_CCS811_DRIVE_MODE_4)
meas_mode = CCS811_MODE_IAQ_250MSEC;
#endif
if (i2c_reg_write_byte(drv_data->i2c, DT_INST_REG_ADDR(0),
CCS811_REG_MEAS_MODE,
meas_mode) < 0) {
LOG_ERR("Failed to set Measurement mode");
ret = -EIO;
goto out;
}
drv_data->mode = meas_mode;
/* Check for error */
status = fetch_status(drv_data->i2c);
if (status < 0) {
ret = -EIO;
goto out;
}
if (status & CCS811_STATUS_ERROR) {
LOG_ERR("CCS811 Error %02x during sensor configuration",
error_from_status(status));
ret = -EINVAL;
goto out;
}
#ifdef CONFIG_CCS811_TRIGGER
ret = ccs811_init_interrupt(dev);
LOG_DBG("CCS811 interrupt init got %d", ret);
#endif
out:
set_wake(drv_data, false);
return ret;
}
static struct ccs811_data ccs811_driver;
DEVICE_DT_INST_DEFINE(0, ccs811_init, device_pm_control_nop,
&ccs811_driver, NULL,
POST_KERNEL, CONFIG_SENSOR_INIT_PRIORITY,
&ccs811_driver_api);