zephyr/drivers/dma/dma_iproc_pax_v2.c
Raveendra Padasalagi 9adbc5a616 drivers: dma: paxdma: Sync payload as separate packet
Sync packet is always CARD to HOST and if it's combined with HOST
to CARD transfers in one single RM header packet, it's not allowed
due to RM implementation constraints. RM implementation allows same
type of data transfer direction in all the BD's populated under one
header BD.

Signed-off-by: Raveendra Padasalagi <raveendra.padasalagi@broadcom.com>
2021-03-19 09:32:08 -04:00

1116 lines
31 KiB
C

/*
* Copyright 2020 Broadcom
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT brcm_iproc_pax_dma_v2
#include <arch/cpu.h>
#include <cache.h>
#include <errno.h>
#include <init.h>
#include <kernel.h>
#include <linker/sections.h>
#include <soc.h>
#include <string.h>
#include <toolchain.h>
#include <zephyr/types.h>
#include <drivers/dma.h>
#include <drivers/pcie/endpoint/pcie_ep.h>
#include "dma_iproc_pax_v2.h"
#define LOG_LEVEL CONFIG_DMA_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(dma_iproc_pax_v2);
#define PAX_DMA_DEV_NAME(dev) ((dev)->name)
#define PAX_DMA_DEV_CFG(dev) \
((struct dma_iproc_pax_cfg *)(dev)->config)
#define PAX_DMA_DEV_DATA(dev) \
((struct dma_iproc_pax_data *)(dev)->data)
/* Driver runtime data for PAX DMA and RM */
static struct dma_iproc_pax_data pax_dma_data;
/**
* @brief Opaque/packet id allocator, range 0 to 31
*/
static inline uint32_t reset_pkt_id(struct dma_iproc_pax_ring_data *ring)
{
return ring->pkt_id = 0x0;
}
static inline uint32_t alloc_pkt_id(struct dma_iproc_pax_ring_data *ring)
{
ring->pkt_id = (ring->pkt_id + 1) % 32;
return ring->pkt_id;
}
static inline uint32_t curr_pkt_id(struct dma_iproc_pax_ring_data *ring)
{
return ring->pkt_id;
}
static inline uint32_t curr_toggle_val(struct dma_iproc_pax_ring_data *ring)
{
return ring->curr.toggle;
}
/**
* @brief Populate header descriptor
*/
static inline void rm_write_header_desc(void *desc, uint32_t toggle,
uint32_t opq, uint32_t bdcount,
uint64_t pci_addr)
{
struct rm_header *r = (struct rm_header *)desc;
r->opq = opq;
r->bdf = 0x0;
r->res1 = 0x0;
/* DMA descriptor count init vlaue */
r->bdcount = bdcount;
r->prot = 0x0;
r->res2 = 0x0;
/* No packet extension, start and end set to '1' */
r->start = 1;
r->end = 1;
/* RM header type */
r->type = PAX_DMA_TYPE_RM_HEADER;
r->pcie_addr_msb = PAX_DMA_PCI_ADDR_HI_MSB8(pci_addr);
r->res3 = 0x0;
r->res4 = 0x0;
#ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
r->toggle = toggle;
#elif CONFIG_DMA_IPROC_PAX_DOORBELL_MODE
r->toggle = 0;
#endif
}
/**
* @brief Populate pcie descriptor
*/
static inline void rm_write_pcie_desc(void *desc,
uint32_t toggle,
uint64_t pci_addr)
{
struct pcie_desc *pcie = (struct pcie_desc *)desc;
pcie->pcie_addr_lsb = pci_addr;
pcie->res1 = 0x0;
/* PCIE header type */
pcie->type = PAX_DMA_TYPE_PCIE_DESC;
#ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
pcie->toggle = toggle;
#elif CONFIG_DMA_IPROC_PAX_DOORBELL_MODE
pcie->toggle = 0;
#endif
}
/**
* @brief Populate src/destionation descriptor
*/
static inline void rm_write_src_dst_desc(void *desc_ptr,
bool is_mega,
uint32_t toggle,
uint64_t axi_addr,
uint32_t size,
enum pax_dma_dir direction)
{
struct src_dst_desc *desc;
desc = (struct src_dst_desc *)desc_ptr;
desc->axi_addr = axi_addr;
desc->length = size;
#ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
desc->toggle = toggle;
#elif CONFIG_DMA_IPROC_PAX_DOORBELL_MODE
desc->toggle = 0;
#endif
if (direction == CARD_TO_HOST) {
desc->type = is_mega ?
PAX_DMA_TYPE_MEGA_SRC_DESC : PAX_DMA_TYPE_SRC_DESC;
} else {
desc->type = is_mega ?
PAX_DMA_TYPE_MEGA_DST_DESC : PAX_DMA_TYPE_DST_DESC;
}
}
#ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
static void init_toggle(void *desc, uint32_t toggle)
{
struct rm_header *r = (struct rm_header *)desc;
r->toggle = toggle;
}
#endif
/**
* @brief Return current descriptor memory address and
* increment to point to next descriptor memory address.
*/
static inline void *get_curr_desc_addr(struct dma_iproc_pax_ring_data *ring)
{
struct next_ptr_desc *nxt;
uintptr_t curr;
curr = (uintptr_t)ring->curr.write_ptr;
/* if hit next table ptr, skip to next location, flip toggle */
nxt = (struct next_ptr_desc *)curr;
if (nxt->type == PAX_DMA_TYPE_NEXT_PTR) {
LOG_DBG("hit next_ptr@0x%lx %d, next_table@0x%lx\n",
curr, nxt->toggle, (uintptr_t)nxt->addr);
uintptr_t last = (uintptr_t)ring->bd +
PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS;
nxt->toggle = ring->curr.toggle;
ring->curr.toggle = (ring->curr.toggle == 0) ? 1 : 0;
/* move to next addr, wrap around if hits end */
curr += PAX_DMA_RM_DESC_BDWIDTH;
if (curr == last) {
curr = (uintptr_t)ring->bd;
LOG_DBG("hit end of desc:0x%lx, wrap to 0x%lx\n",
last, curr);
}
ring->descs_inflight++;
}
ring->curr.write_ptr = (void *)(curr + PAX_DMA_RM_DESC_BDWIDTH);
ring->descs_inflight++;
return (void *)curr;
}
/**
* @brief Populate next ptr descriptor
*/
static void rm_write_next_table_desc(void *desc, void *next_ptr,
uint32_t toggle)
{
struct next_ptr_desc *nxt = (struct next_ptr_desc *)desc;
nxt->addr = (uintptr_t)next_ptr;
nxt->type = PAX_DMA_TYPE_NEXT_PTR;
nxt->toggle = toggle;
}
static void prepare_ring(struct dma_iproc_pax_ring_data *ring)
{
uintptr_t curr, next, last;
int buff_count = PAX_DMA_NUM_BD_BUFFS;
#ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
uint32_t toggle;
#endif
/* zero out descriptor area */
memset(ring->bd, 0x0, PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS);
memset(ring->cmpl, 0x0, PAX_DMA_RM_CMPL_RING_SIZE);
/* start with first buffer, valid toggle is 0x1 */
#ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
toggle = 0x1;
#endif
curr = (uintptr_t)ring->bd;
next = curr + PAX_DMA_RM_DESC_RING_SIZE;
last = curr + PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS;
do {
#ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
init_toggle((void *)curr, toggle);
/* Place next_table desc as last BD entry on each buffer */
rm_write_next_table_desc(PAX_DMA_NEXT_TBL_ADDR((void *)curr),
(void *)next, toggle);
#elif CONFIG_DMA_IPROC_PAX_DOORBELL_MODE
/* Place next_table desc as last BD entry on each buffer */
rm_write_next_table_desc(PAX_DMA_NEXT_TBL_ADDR((void *)curr),
(void *)next, 0);
#endif
#ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
/* valid toggle flips for each buffer */
toggle = toggle ? 0x0 : 0x1;
#endif
curr += PAX_DMA_RM_DESC_RING_SIZE;
next += PAX_DMA_RM_DESC_RING_SIZE;
/* last entry, chain back to first buffer */
if (next == last) {
next = (uintptr_t)ring->bd;
}
} while (--buff_count);
dma_mb();
/* start programming from first RM header */
ring->curr.write_ptr = ring->bd;
/* valid toggle starts with 1 after reset */
ring->curr.toggle = 1;
/* completion read offset */
ring->curr.cmpl_rd_offs = 0;
/* inflight descs */
ring->descs_inflight = 0;
/* init sync data for the ring */
ring->curr.sync_data.signature = PAX_DMA_WRITE_SYNC_SIGNATURE;
ring->curr.sync_data.ring = ring->idx;
/* pkt id for active dma xfer */
ring->curr.sync_data.opaque = 0x0;
/* pkt count for active dma xfer */
ring->curr.sync_data.total_pkts = 0x0;
}
static int init_rm(struct dma_iproc_pax_data *pd)
{
int ret = -ETIMEDOUT, timeout = 1000;
k_mutex_lock(&pd->dma_lock, K_FOREVER);
/* Wait for Ring Manager ready */
do {
LOG_DBG("Waiting for RM HW init\n");
if ((sys_read32(RM_COMM_REG(pd, RM_COMM_MAIN_HW_INIT_DONE)) &
RM_COMM_MAIN_HW_INIT_DONE_MASK)) {
ret = 0;
break;
}
k_sleep(K_MSEC(1));
} while (--timeout);
k_mutex_unlock(&pd->dma_lock);
if (!timeout) {
LOG_WRN("RM HW Init timedout!\n");
} else {
LOG_INF("PAX DMA RM HW Init Done\n");
}
return ret;
}
static void rm_cfg_start(struct dma_iproc_pax_data *pd)
{
uint32_t val;
k_mutex_lock(&pd->dma_lock, K_FOREVER);
/* set config done 0, enable toggle mode */
val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL));
val &= ~RM_COMM_CONTROL_CONFIG_DONE;
sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
val &= ~(RM_COMM_CONTROL_MODE_MASK << RM_COMM_CONTROL_MODE_SHIFT);
#ifdef CONFIG_DMA_IPROC_PAX_DOORBELL_MODE
val |= (RM_COMM_CONTROL_MODE_DOORBELL <<
RM_COMM_CONTROL_MODE_SHIFT);
#elif CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
val |= (RM_COMM_CONTROL_MODE_ALL_BD_TOGGLE <<
RM_COMM_CONTROL_MODE_SHIFT);
#endif
sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
sys_write32(RM_COMM_MSI_DISABLE_MASK,
RM_COMM_REG(pd, RM_COMM_MSI_DISABLE));
val = sys_read32(RM_COMM_REG(pd, RM_COMM_AXI_READ_BURST_THRESHOLD));
val &= ~(RM_COMM_THRESHOLD_CFG_RD_FIFO_MAX_THRESHOLD_MASK <<
RM_COMM_THRESHOLD_CFG_RD_FIFO_MAX_THRESHOLD_SHIFT);
val |= RM_COMM_THRESHOLD_CFG_RD_FIFO_MAX_THRESHOLD_SHIFT_VAL <<
RM_COMM_THRESHOLD_CFG_RD_FIFO_MAX_THRESHOLD_SHIFT;
sys_write32(val, RM_COMM_REG(pd, RM_COMM_AXI_READ_BURST_THRESHOLD));
val = sys_read32(RM_COMM_REG(pd, RM_COMM_FIFO_FULL_THRESHOLD));
val &= ~(RM_COMM_PKT_ALIGNMENT_BD_FIFO_FULL_THRESHOLD_MASK <<
RM_COMM_PKT_ALIGNMENT_BD_FIFO_FULL_THRESHOLD_SHIFT);
val |= RM_COMM_PKT_ALIGNMENT_BD_FIFO_FULL_THRESHOLD_VAL <<
RM_COMM_PKT_ALIGNMENT_BD_FIFO_FULL_THRESHOLD_SHIFT;
val &= ~(RM_COMM_BD_FIFO_FULL_THRESHOLD_MASK <<
RM_COMM_BD_FIFO_FULL_THRESHOLD_SHIFT);
val |= RM_COMM_BD_FIFO_FULL_THRESHOLD_VAL <<
RM_COMM_BD_FIFO_FULL_THRESHOLD_SHIFT;
sys_write32(val, RM_COMM_REG(pd, RM_COMM_FIFO_FULL_THRESHOLD));
/* Enable Line interrupt */
val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL));
val |= RM_COMM_CONTROL_LINE_INTR_EN;
sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
/* Enable AE_TIMEOUT */
sys_write32(RM_COMM_AE_TIMEOUT_VAL,
RM_COMM_REG(pd, RM_COMM_AE_TIMEOUT));
val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL));
val |= RM_COMM_CONTROL_AE_TIMEOUT_EN;
sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
/* AE (Acceleration Engine) grouping to group '0' */
val = sys_read32(RM_COMM_REG(pd, RM_AE0_AE_CONTROL));
val &= ~RM_AE_CTRL_AE_GROUP_MASK;
sys_write32(val, RM_COMM_REG(pd, RM_AE0_AE_CONTROL));
val |= RM_AE_CONTROL_ACTIVE;
sys_write32(val, RM_COMM_REG(pd, RM_AE0_AE_CONTROL));
/* AXI read/write channel enable */
val = sys_read32(RM_COMM_REG(pd, RM_COMM_AXI_CONTROL));
val |= (RM_COMM_AXI_CONTROL_RD_CH_EN | RM_COMM_AXI_CONTROL_WR_CH_EN);
sys_write32(val, RM_COMM_REG(pd, RM_COMM_AXI_CONTROL));
/* Tune RM control programming for 4 rings */
sys_write32(RM_COMM_TIMER_CONTROL0_VAL,
RM_COMM_REG(pd, RM_COMM_TIMER_CONTROL_0));
sys_write32(RM_COMM_TIMER_CONTROL1_VAL,
RM_COMM_REG(pd, RM_COMM_TIMER_CONTROL_1));
val = sys_read32(RM_COMM_REG(pd, RM_COMM_BURST_LENGTH));
val |= RM_COMM_BD_FETCH_CACHE_ALIGNED_DISABLED;
val |= RM_COMM_VALUE_FOR_DDR_ADDR_GEN_VAL <<
RM_COMM_VALUE_FOR_DDR_ADDR_GEN_SHIFT;
val |= RM_COMM_VALUE_FOR_TOGGLE_VAL << RM_COMM_VALUE_FOR_TOGGLE_SHIFT;
sys_write32(val, RM_COMM_REG(pd, RM_COMM_BURST_LENGTH));
val = sys_read32(RM_COMM_REG(pd, RM_COMM_BD_FETCH_MODE_CONTROL));
val |= RM_COMM_DISABLE_GRP_BD_FIFO_FLOW_CONTROL_FOR_PKT_ALIGNMENT;
val |= RM_COMM_DISABLE_PKT_ALIGNMENT_BD_FIFO_FLOW_CONTROL;
sys_write32(val, RM_COMM_REG(pd, RM_COMM_BD_FETCH_MODE_CONTROL));
/* Set Sequence max count to the max supported value */
val = sys_read32(RM_COMM_REG(pd, RM_COMM_MASK_SEQUENCE_MAX_COUNT));
val = (val | RING_MASK_SEQ_MAX_COUNT_MASK);
sys_write32(val, RM_COMM_REG(pd, RM_COMM_MASK_SEQUENCE_MAX_COUNT));
k_mutex_unlock(&pd->dma_lock);
}
static void rm_ring_clear_stats(struct dma_iproc_pax_data *pd,
enum ring_idx idx)
{
/* Read ring Tx, Rx, and Outstanding counts to clear */
sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_RECV_LS));
sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_RECV_MS));
sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_TRANS_LS));
sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_TRANS_MS));
sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_OUTSTAND));
}
static void rm_cfg_finish(struct dma_iproc_pax_data *pd)
{
uint32_t val;
k_mutex_lock(&pd->dma_lock, K_FOREVER);
/* set Ring config done */
val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL));
val |= RM_COMM_CONTROL_CONFIG_DONE;
sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
k_mutex_unlock(&pd->dma_lock);
}
static inline void write_doorbell(struct dma_iproc_pax_data *pd,
enum ring_idx idx)
{
struct dma_iproc_pax_ring_data *ring = &(pd->ring[idx]);
sys_write32(ring->descs_inflight,
RM_RING_REG(pd, idx, RING_DOORBELL_BD_WRITE_COUNT));
ring->descs_inflight = 0;
}
static inline void set_ring_active(struct dma_iproc_pax_data *pd,
enum ring_idx idx,
bool active)
{
uint32_t val;
val = sys_read32(RM_RING_REG(pd, idx, RING_CONTROL));
if (active)
val |= RING_CONTROL_ACTIVE;
else
val &= ~RING_CONTROL_ACTIVE;
sys_write32(val, RM_RING_REG(pd, idx, RING_CONTROL));
}
static int init_ring(struct dma_iproc_pax_data *pd, enum ring_idx idx)
{
uint32_t val;
uintptr_t desc = (uintptr_t)pd->ring[idx].bd;
uintptr_t cmpl = (uintptr_t)pd->ring[idx].cmpl;
int timeout = 5000, ret = 0;
k_mutex_lock(&pd->dma_lock, K_FOREVER);
/* Read cmpl write ptr incase previous dma stopped */
sys_read32(RM_RING_REG(pd, idx, RING_CMPL_WRITE_PTR));
/* Inactivate ring */
sys_write32(0x0, RM_RING_REG(pd, idx, RING_CONTROL));
/* set Ring config done */
val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL));
val |= RM_COMM_CONTROL_CONFIG_DONE;
sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
/* Flush ring before loading new descriptor */
sys_write32(RING_CONTROL_FLUSH, RM_RING_REG(pd, idx,
RING_CONTROL));
do {
if (sys_read32(RM_RING_REG(pd, idx, RING_FLUSH_DONE)) &
RING_FLUSH_DONE_MASK)
break;
k_busy_wait(1);
} while (--timeout);
if (!timeout) {
LOG_WRN("Ring %d flush timedout!\n", idx);
ret = -ETIMEDOUT;
goto err;
}
/* clear ring after flush */
sys_write32(0x0, RM_RING_REG(pd, idx, RING_CONTROL));
/* Clear Ring config done */
val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL));
val &= ~(RM_COMM_CONTROL_CONFIG_DONE);
sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
/* ring group id set to '0' */
val = sys_read32(RM_COMM_REG(pd, RM_COMM_CTRL_REG(idx)));
val &= ~RING_COMM_CTRL_AE_GROUP_MASK;
sys_write32(val, RM_COMM_REG(pd, RM_COMM_CTRL_REG(idx)));
/* DDR update control, set timeout value */
val = RING_DDR_CONTROL_COUNT(RING_DDR_CONTROL_COUNT_VAL) |
RING_DDR_CONTROL_TIMER(RING_DDR_CONTROL_TIMER_VAL) |
RING_DDR_CONTROL_ENABLE;
sys_write32(val, RM_RING_REG(pd, idx, RING_CMPL_WR_PTR_DDR_CONTROL));
/* Disable Ring MSI Timeout */
sys_write32(RING_DISABLE_MSI_TIMEOUT_VALUE,
RM_RING_REG(pd, idx, RING_DISABLE_MSI_TIMEOUT));
/* BD and CMPL desc queue start address */
sys_write32((uint32_t)desc, RM_RING_REG(pd, idx, RING_BD_START_ADDR));
sys_write32((uint32_t)cmpl, RM_RING_REG(pd, idx, RING_CMPL_START_ADDR));
val = sys_read32(RM_RING_REG(pd, idx, RING_BD_READ_PTR));
/* keep ring inactive after init to avoid BD poll */
#ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
set_ring_active(pd, idx, false);
#elif CONFIG_DMA_IPROC_PAX_DOORBELL_MODE
set_ring_active(pd, idx, true);
#endif
#if !defined(CONFIG_DMA_IPROC_PAX_POLL_MODE)
/* Enable ring completion interrupt */
sys_write32(0x0, RM_RING_REG(pd, idx,
RING_COMPLETION_INTERRUPT_STAT_MASK));
#endif
rm_ring_clear_stats(pd, idx);
err:
k_mutex_unlock(&pd->dma_lock);
return ret;
}
static int poll_on_write_sync(const struct device *dev,
struct dma_iproc_pax_ring_data *ring)
{
struct dma_iproc_pax_cfg *cfg = PAX_DMA_DEV_CFG(dev);
const struct device *pcidev;
struct dma_iproc_pax_write_sync_data sync_rd, *recv, *sent;
uint64_t pci_addr;
uint32_t *pci32, *axi32;
uint32_t zero_init = 0, timeout = PAX_DMA_MAX_SYNC_WAIT;
int ret;
pcidev = device_get_binding(cfg->pcie_dev_name);
if (!pcidev) {
LOG_ERR("Cannot get pcie device\n");
return -EINVAL;
}
recv = &sync_rd;
sent = &(ring->curr.sync_data);
/* form host pci sync address */
pci32 = (uint32_t *)&pci_addr;
pci32[0] = ring->sync_pci.addr_lo;
pci32[1] = ring->sync_pci.addr_hi;
axi32 = (uint32_t *)&sync_rd;
do {
ret = pcie_ep_xfer_data_memcpy(pcidev, pci_addr,
(uintptr_t *)axi32, 4,
PCIE_OB_LOWMEM, HOST_TO_DEVICE);
if (memcmp((void *)recv, (void *)sent, 4) == 0) {
/* clear the sync word */
ret = pcie_ep_xfer_data_memcpy(pcidev, pci_addr,
(uintptr_t *)&zero_init,
4, PCIE_OB_LOWMEM,
DEVICE_TO_HOST);
dma_mb();
ret = 0;
break;
}
k_busy_wait(1);
} while (--timeout);
if (!timeout) {
LOG_ERR("[ring %d]: not recvd write sync!\n", ring->idx);
ret = -ETIMEDOUT;
}
return ret;
}
static int process_cmpl_event(const struct device *dev,
enum ring_idx idx, uint32_t pl_len)
{
struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
uint32_t wr_offs, rd_offs, ret = 0;
struct dma_iproc_pax_ring_data *ring = &(pd->ring[idx]);
struct cmpl_pkt *c;
uint32_t is_outstanding;
/* cmpl read offset, unprocessed cmpl location */
rd_offs = ring->curr.cmpl_rd_offs;
wr_offs = sys_read32(RM_RING_REG(pd, idx,
RING_CMPL_WRITE_PTR));
/* Update read ptr to "processed" */
ring->curr.cmpl_rd_offs = wr_offs;
/*
* Ensure consistency of completion descriptor
* The completion desc is updated by RM via AXI stream
* CPU need to ensure the memory operations are completed
* before reading cmpl area, by a "dsb"
* If Dcache enabled, need to invalidate the cachelines to
* read updated cmpl desc. The cache API also issues dsb.
*/
dma_mb();
/* Decode cmpl pkt id to verify */
c = (struct cmpl_pkt *)((uintptr_t)ring->cmpl +
PAX_DMA_CMPL_DESC_SIZE * PAX_DMA_CURR_CMPL_IDX(wr_offs));
LOG_DBG("RING%d WR_PTR:%d opq:%d, rm_status:%x dma_status:%x\n",
idx, wr_offs, c->opq, c->rm_status, c->dma_status);
is_outstanding = sys_read32(RM_RING_REG(pd, idx,
RING_NUM_REQ_OUTSTAND));
if ((ring->curr.opq != c->opq) && (is_outstanding != 0)) {
LOG_ERR("RING%d: pkt id should be %d, rcvd %d outst=%d\n",
idx, ring->curr.opq, c->opq, is_outstanding);
ret = -EIO;
}
/* check for completion AE timeout */
if (c->rm_status == RM_COMPLETION_AE_TIMEOUT) {
LOG_ERR("RING%d WR_PTR:%d rm_status:%x AE Timeout!\n",
idx, wr_offs, c->rm_status);
/* TBD: Issue full card reset to restore operations */
LOG_ERR("Needs Card Reset to recover!\n");
ret = -ETIMEDOUT;
}
if (ring->dma_callback) {
ring->dma_callback(dev, ring->callback_arg, idx, ret);
}
/* clear total packet count and non header bd count */
ring->total_pkt_count = 0;
return ret;
}
#ifdef CONFIG_DMA_IPROC_PAX_POLL_MODE
static int peek_ring_cmpl(const struct device *dev,
enum ring_idx idx, uint32_t pl_len)
{
struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
uint32_t wr_offs, rd_offs, timeout = PAX_DMA_MAX_POLL_WAIT;
struct dma_iproc_pax_ring_data *ring = &(pd->ring[idx]);
/* cmpl read offset, unprocessed cmpl location */
rd_offs = ring->curr.cmpl_rd_offs;
/* poll write_ptr until cmpl received for all buffers */
do {
wr_offs = sys_read32(RM_RING_REG(pd, idx,
RING_CMPL_WRITE_PTR));
if (PAX_DMA_GET_CMPL_COUNT(wr_offs, rd_offs) >= pl_len)
break;
k_busy_wait(1);
} while (--timeout);
if (timeout == 0) {
LOG_ERR("RING%d timeout, rcvd %d, expected %d!\n",
idx, PAX_DMA_GET_CMPL_COUNT(wr_offs, rd_offs), pl_len);
/* More debug info on current dma instance */
LOG_ERR("WR_PTR:%x RD_PTR%x\n", wr_offs, rd_offs);
return -ETIMEDOUT;
}
return process_cmpl_event(dev, idx, pl_len);
}
#else
static void rm_isr(void *arg)
{
uint32_t status, err_stat, idx;
const struct device *dev = arg;
struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
err_stat =
sys_read32(RM_COMM_REG(pd,
RM_COMM_AE_INTERFACE_GROUP_0_INTERRUPT_MASK));
sys_write32(err_stat,
RM_COMM_REG(pd,
RM_COMM_AE_INTERFACE_GROUP_0_INTERRUPT_CLEAR));
/* alert waiting thread to process, for each completed ring */
for (idx = PAX_DMA_RING0; idx < PAX_DMA_RINGS_MAX; idx++) {
status =
sys_read32(RM_RING_REG(pd, idx,
RING_COMPLETION_INTERRUPT_STAT));
sys_write32(status,
RM_RING_REG(pd, idx,
RING_COMPLETION_INTERRUPT_STAT_CLEAR));
if (status & 0x1) {
k_sem_give(&pd->ring[idx].alert);
}
}
}
#endif
static int dma_iproc_pax_init(const struct device *dev)
{
struct dma_iproc_pax_cfg *cfg = PAX_DMA_DEV_CFG(dev);
struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
int r;
uintptr_t mem_aligned;
pd->dma_base = cfg->dma_base;
pd->rm_comm_base = cfg->rm_comm_base;
pd->used_rings = (cfg->use_rings < PAX_DMA_RINGS_MAX) ?
cfg->use_rings : PAX_DMA_RINGS_MAX;
/* dma/rm access lock */
k_mutex_init(&pd->dma_lock);
/* Ring Manager H/W init */
if (init_rm(pd)) {
return -ETIMEDOUT;
}
/* common rm config */
rm_cfg_start(pd);
/* individual ring config */
for (r = 0; r < pd->used_rings; r++) {
/* per-ring mutex lock */
k_mutex_init(&pd->ring[r].lock);
/* Init alerts */
k_sem_init(&pd->ring[r].alert, 0, 1);
pd->ring[r].idx = r;
pd->ring[r].ring_base = cfg->rm_base +
PAX_DMA_RING_ADDR_OFFSET(r);
LOG_DBG("RING%d,VERSION:0x%x\n", pd->ring[r].idx,
sys_read32(RM_RING_REG(pd, r, RING_VER)));
/* Allocate for 2 BD buffers + cmpl buffer + sync location */
pd->ring[r].ring_mem = (void *)((uintptr_t)cfg->bd_memory_base +
r * PAX_DMA_PER_RING_ALLOC_SIZE);
if (!pd->ring[r].ring_mem) {
LOG_ERR("RING%d failed to alloc desc memory!\n", r);
return -ENOMEM;
}
/* Find 8K aligned address within allocated region */
mem_aligned = ((uintptr_t)pd->ring[r].ring_mem +
PAX_DMA_RING_ALIGN - 1) &
~(PAX_DMA_RING_ALIGN - 1);
pd->ring[r].cmpl = (void *)mem_aligned;
pd->ring[r].bd = (void *)(mem_aligned +
PAX_DMA_RM_CMPL_RING_SIZE);
pd->ring[r].sync_loc = (void *)((uintptr_t)pd->ring[r].bd +
PAX_DMA_RM_DESC_RING_SIZE *
PAX_DMA_NUM_BD_BUFFS);
LOG_DBG("Ring%d,allocated Mem:0x%p Size %d\n",
pd->ring[r].idx,
pd->ring[r].ring_mem,
PAX_DMA_PER_RING_ALLOC_SIZE);
LOG_DBG("Ring%d,BD:0x%p, CMPL:0x%p, SYNC_LOC:0x%p\n",
pd->ring[r].idx,
pd->ring[r].bd,
pd->ring[r].cmpl,
pd->ring[r].sync_loc);
/* Prepare ring desc table */
prepare_ring(&(pd->ring[r]));
/* initialize ring */
init_ring(pd, r);
}
/* set ring config done */
rm_cfg_finish(pd);
#ifndef CONFIG_DMA_IPROC_PAX_POLL_MODE
/* Register and enable RM interrupt */
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
rm_isr,
DEVICE_DT_INST_GET(0),
0);
irq_enable(DT_INST_IRQN(0));
#else
LOG_INF("%s PAX DMA rings in poll mode!\n", PAX_DMA_DEV_NAME(dev));
#endif
LOG_INF("%s RM setup %d rings\n", PAX_DMA_DEV_NAME(dev),
pd->used_rings);
return 0;
}
static int dma_iproc_pax_gen_desc(struct dma_iproc_pax_ring_data *ring,
bool is_mega,
uint64_t pci_addr,
uint64_t axi_addr,
uint32_t length,
enum pax_dma_dir dir,
uint32_t *non_hdr_bd_count)
{
struct rm_header *hdr;
if (*non_hdr_bd_count == 0) {
/* Generate Header BD */
ring->current_hdr = (uintptr_t)get_curr_desc_addr(ring);
rm_write_header_desc((void *)ring->current_hdr,
curr_toggle_val(ring),
curr_pkt_id(ring),
PAX_DMA_RM_DESC_BDCOUNT,
pci_addr);
ring->total_pkt_count++;
}
rm_write_pcie_desc(get_curr_desc_addr(ring),
curr_toggle_val(ring), pci_addr);
*non_hdr_bd_count = *non_hdr_bd_count + 1;
rm_write_src_dst_desc(get_curr_desc_addr(ring),
is_mega, curr_toggle_val(ring),
axi_addr, length, dir);
*non_hdr_bd_count = *non_hdr_bd_count + 1;
/* Update Header BD with bd count */
hdr = (struct rm_header *)ring->current_hdr;
hdr->bdcount = *non_hdr_bd_count;
if (*non_hdr_bd_count == MAX_BD_COUNT_PER_HEADER) {
*non_hdr_bd_count = 0;
}
return 0;
}
static int dma_iproc_pax_gen_packets(const struct device *dev,
struct dma_iproc_pax_ring_data *ring,
uint32_t direction,
struct dma_block_config *config,
uint32_t *non_hdr_bd_count)
{
uint32_t outstanding, remaining_len;
uint32_t offset, curr, mega_len;
uint64_t axi_addr;
uint64_t pci_addr;
enum pax_dma_dir dir;
switch (direction) {
case MEMORY_TO_PERIPHERAL:
pci_addr = config->dest_address;
axi_addr = config->source_address;
dir = CARD_TO_HOST;
break;
case PERIPHERAL_TO_MEMORY:
axi_addr = config->dest_address;
pci_addr = config->source_address;
dir = HOST_TO_CARD;
break;
default:
LOG_ERR("not supported transfer direction");
return -EINVAL;
}
outstanding = config->block_size;
offset = 0;
while (outstanding) {
curr = MIN(outstanding, PAX_DMA_MAX_SZ_PER_BD);
mega_len = curr / PAX_DMA_MEGA_LENGTH_MULTIPLE;
remaining_len = curr % PAX_DMA_MEGA_LENGTH_MULTIPLE;
pci_addr = pci_addr + offset;
axi_addr = axi_addr + offset;
if (mega_len) {
dma_iproc_pax_gen_desc(ring, true, pci_addr,
axi_addr, mega_len, dir,
non_hdr_bd_count);
offset = offset + mega_len *
PAX_DMA_MEGA_LENGTH_MULTIPLE;
}
if (remaining_len) {
pci_addr = pci_addr + offset;
axi_addr = axi_addr + offset;
dma_iproc_pax_gen_desc(ring, false, pci_addr, axi_addr,
remaining_len, dir,
non_hdr_bd_count);
offset = offset + remaining_len;
}
outstanding = outstanding - curr;
}
return 0;
}
#ifdef CONFIG_DMA_IPROC_PAX_POLL_MODE
static void set_pkt_count(const struct device *dev,
enum ring_idx idx,
uint32_t pl_len)
{
/* Nothing needs to be programmed here in poll mode */
}
static int wait_for_pkt_completion(const struct device *dev,
enum ring_idx idx,
uint32_t pl_len)
{
/* poll for completion */
return peek_ring_cmpl(dev, idx, pl_len);
}
#else
static void set_pkt_count(const struct device *dev,
enum ring_idx idx,
uint32_t pl_len)
{
struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
uint32_t val;
/* program packet count for interrupt assertion */
val = sys_read32(RM_RING_REG(pd, idx,
RING_CMPL_WR_PTR_DDR_CONTROL));
val &= ~RING_DDR_CONTROL_COUNT_MASK;
val |= RING_DDR_CONTROL_COUNT(pl_len);
sys_write32(val, RM_RING_REG(pd, idx,
RING_CMPL_WR_PTR_DDR_CONTROL));
}
static int wait_for_pkt_completion(const struct device *dev,
enum ring_idx idx,
uint32_t pl_len)
{
struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
struct dma_iproc_pax_ring_data *ring;
ring = &(pd->ring[idx]);
/* wait for sg dma completion alert */
if (k_sem_take(&ring->alert, K_MSEC(PAX_DMA_TIMEOUT)) != 0) {
LOG_ERR("PAX DMA [ring %d] Timeout!\n", idx);
return -ETIMEDOUT;
}
return process_cmpl_event(dev, idx, pl_len);
}
#endif
static int dma_iproc_pax_process_dma_blocks(const struct device *dev,
enum ring_idx idx,
struct dma_config *config)
{
struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
struct dma_iproc_pax_cfg *cfg = PAX_DMA_DEV_CFG(dev);
int ret = 0;
struct dma_iproc_pax_ring_data *ring;
uint32_t toggle_bit, non_hdr_bd_count = 0;
struct dma_block_config sync_pl;
struct dma_iproc_pax_addr64 sync;
struct dma_block_config *block_config = config->head_block;
if (block_config == NULL) {
LOG_ERR("head_block is NULL\n");
return -EINVAL;
}
ring = &(pd->ring[idx]);
/*
* Host sync buffer isn't ready at zephyr/driver init-time
* Read the host address location once at first DMA write
* on that ring.
*/
if ((ring->sync_pci.addr_lo == 0x0) &&
(ring->sync_pci.addr_hi == 0x0)) {
/* populate sync data location */
LOG_DBG("sync addr loc 0x%x\n", cfg->scr_addr_loc);
sync.addr_lo = sys_read32(cfg->scr_addr_loc + 4);
sync.addr_hi = sys_read32(cfg->scr_addr_loc);
ring->sync_pci.addr_lo = sync.addr_lo + idx * 4;
ring->sync_pci.addr_hi = sync.addr_hi;
LOG_DBG("ring:%d,sync addr:0x%x.0x%x\n", idx,
ring->sync_pci.addr_hi,
ring->sync_pci.addr_lo);
}
/* account extra sync packet */
ring->curr.sync_data.opaque = ring->curr.opq;
ring->curr.sync_data.total_pkts = config->block_count;
memcpy((void *)ring->sync_loc,
(void *)&(ring->curr.sync_data), 4);
sync_pl.dest_address = ring->sync_pci.addr_lo |
(uint64_t)ring->sync_pci.addr_hi << 32;
sync_pl.source_address = (uintptr_t)ring->sync_loc;
sync_pl.block_size = 4; /* 4-bytes */
/* current toggle bit */
toggle_bit = ring->curr.toggle;
/* current opq value for cmpl check */
ring->curr.opq = curr_pkt_id(ring);
/* Form descriptors for total block counts */
while (block_config != NULL) {
ret = dma_iproc_pax_gen_packets(dev, ring,
config->channel_direction,
block_config,
&non_hdr_bd_count);
if (ret)
goto err;
block_config = block_config->next_block;
}
/*
* Write sync payload descriptors should go with separate RM header
* as RM implementation allows all the BD's in a header packet should
* have same data transfer direction. Setting non_hdr_bd_count to 0,
* helps generate separate packet.
*/
ring->non_hdr_bd_count = 0;
dma_iproc_pax_gen_packets(dev, ring, MEMORY_TO_PERIPHERAL, &sync_pl,
&non_hdr_bd_count);
alloc_pkt_id(ring);
err:
return ret;
}
static int dma_iproc_pax_configure(const struct device *dev, uint32_t channel,
struct dma_config *cfg)
{
struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
struct dma_iproc_pax_ring_data *ring;
int ret = 0;
if (channel >= PAX_DMA_RINGS_MAX) {
LOG_ERR("Invalid ring/channel %d\n", channel);
return -EINVAL;
}
ring = &(pd->ring[channel]);
k_mutex_lock(&ring->lock, K_FOREVER);
if (ring->ring_active) {
ret = -EBUSY;
goto err;
}
if (cfg->block_count >= RM_V2_MAX_BLOCK_COUNT) {
LOG_ERR("Dma block count[%d] supported exceeds limit[%d]\n",
cfg->block_count, RM_V2_MAX_BLOCK_COUNT);
ret = -ENOTSUP;
goto err;
}
ring->ring_active = 1;
ret = dma_iproc_pax_process_dma_blocks(dev, channel, cfg);
if (ret) {
ring->ring_active = 0;
goto err;
}
ring->dma_callback = cfg->dma_callback;
ring->callback_arg = cfg->user_data;
err:
k_mutex_unlock(&ring->lock);
return ret;
}
static int dma_iproc_pax_transfer_start(const struct device *dev,
uint32_t channel)
{
int ret = 0;
struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
struct dma_iproc_pax_ring_data *ring;
if (channel >= PAX_DMA_RINGS_MAX) {
LOG_ERR("Invalid ring %d\n", channel);
return -EINVAL;
}
ring = &(pd->ring[channel]);
set_pkt_count(dev, channel, ring->total_pkt_count);
#ifdef CONFIG_DMA_IPROC_PAX_DOORBELL_MODE
write_doorbell(pd, channel);
#elif CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
/* activate the ring */
set_ring_active(pd, channel, true);
#endif
ret = wait_for_pkt_completion(dev, channel, ring->total_pkt_count);
if (ret) {
goto err_ret;
}
ret = poll_on_write_sync(dev, ring);
err_ret:
k_mutex_lock(&ring->lock, K_FOREVER);
ring->ring_active = 0;
k_mutex_unlock(&ring->lock);
#ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
/* deactivate the ring until next active transfer */
set_ring_active(pd, channel, false);
#endif
return ret;
}
static int dma_iproc_pax_transfer_stop(const struct device *dev,
uint32_t channel)
{
return 0;
}
static const struct dma_driver_api pax_dma_driver_api = {
.config = dma_iproc_pax_configure,
.start = dma_iproc_pax_transfer_start,
.stop = dma_iproc_pax_transfer_stop,
};
static const struct dma_iproc_pax_cfg pax_dma_cfg = {
.dma_base = DT_INST_REG_ADDR_BY_NAME(0, dme_regs),
.rm_base = DT_INST_REG_ADDR_BY_NAME(0, rm_ring_regs),
.rm_comm_base = DT_INST_REG_ADDR_BY_NAME(0, rm_comm_regs),
.use_rings = DT_INST_PROP(0, dma_channels),
.bd_memory_base = (void *)DT_INST_PROP_BY_IDX(0, bd_memory, 0),
.scr_addr_loc = DT_INST_PROP(0, scr_addr_loc),
.pcie_dev_name = DT_INST_PROP_BY_PHANDLE(0, pcie_ep, label),
};
DEVICE_DT_INST_DEFINE(0,
&dma_iproc_pax_init,
device_pm_control_nop,
&pax_dma_data,
&pax_dma_cfg,
POST_KERNEL,
CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&pax_dma_driver_api);