There was some code to demonstrate the cpu_mask API here, but it was asymmetric (only thread B was pinned) and assumed exactly two CPUs. Start both threads pinned to CPUs 0 and 1 from an external main, and predicate the pinning on there actually being more than one SMP CPU. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
133 lines
3.3 KiB
C
133 lines
3.3 KiB
C
/* main.c - Hello World demo */
|
|
|
|
/*
|
|
* Copyright (c) 2012-2014 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <zephyr.h>
|
|
#include <sys/printk.h>
|
|
|
|
/*
|
|
* The hello world demo has two threads that utilize semaphores and sleeping
|
|
* to take turns printing a greeting message at a controlled rate. The demo
|
|
* shows both the static and dynamic approaches for spawning a thread; a real
|
|
* world application would likely use the static approach for both threads.
|
|
*/
|
|
|
|
#define PIN_THREADS (IS_ENABLED(CONFIG_SMP) \
|
|
&& IS_ENABLED(CONFIG_SCHED_CPU_MASK) \
|
|
&& (CONFIG_MP_NUM_CPUS > 1))
|
|
|
|
/* size of stack area used by each thread */
|
|
#define STACKSIZE 1024
|
|
|
|
/* scheduling priority used by each thread */
|
|
#define PRIORITY 7
|
|
|
|
/* delay between greetings (in ms) */
|
|
#define SLEEPTIME 500
|
|
|
|
|
|
/*
|
|
* @param my_name thread identification string
|
|
* @param my_sem thread's own semaphore
|
|
* @param other_sem other thread's semaphore
|
|
*/
|
|
void helloLoop(const char *my_name,
|
|
struct k_sem *my_sem, struct k_sem *other_sem)
|
|
{
|
|
const char *tname;
|
|
uint8_t cpu;
|
|
struct k_thread *current_thread;
|
|
|
|
while (1) {
|
|
/* take my semaphore */
|
|
k_sem_take(my_sem, K_FOREVER);
|
|
|
|
current_thread = k_current_get();
|
|
tname = k_thread_name_get(current_thread);
|
|
#if CONFIG_SMP
|
|
cpu = arch_curr_cpu()->id;
|
|
#else
|
|
cpu = 0;
|
|
#endif
|
|
/* say "hello" */
|
|
if (tname == NULL) {
|
|
printk("%s: Hello World from cpu %d on %s!\n",
|
|
my_name, cpu, CONFIG_BOARD);
|
|
} else {
|
|
printk("%s: Hello World from cpu %d on %s!\n",
|
|
tname, cpu, CONFIG_BOARD);
|
|
}
|
|
|
|
/* wait a while, then let other thread have a turn */
|
|
k_busy_wait(100000);
|
|
k_msleep(SLEEPTIME);
|
|
k_sem_give(other_sem);
|
|
}
|
|
}
|
|
|
|
/* define semaphores */
|
|
|
|
K_SEM_DEFINE(threadA_sem, 1, 1); /* starts off "available" */
|
|
K_SEM_DEFINE(threadB_sem, 0, 1); /* starts off "not available" */
|
|
|
|
|
|
/* threadB is a dynamic thread that is spawned by threadA */
|
|
|
|
void threadB(void *dummy1, void *dummy2, void *dummy3)
|
|
{
|
|
ARG_UNUSED(dummy1);
|
|
ARG_UNUSED(dummy2);
|
|
ARG_UNUSED(dummy3);
|
|
|
|
/* invoke routine to ping-pong hello messages with threadA */
|
|
helloLoop(__func__, &threadB_sem, &threadA_sem);
|
|
}
|
|
|
|
K_THREAD_STACK_DEFINE(threadA_stack_area, STACKSIZE);
|
|
static struct k_thread threadA_data;
|
|
|
|
K_THREAD_STACK_DEFINE(threadB_stack_area, STACKSIZE);
|
|
static struct k_thread threadB_data;
|
|
|
|
/* threadA is a static thread that is spawned automatically */
|
|
|
|
void threadA(void *dummy1, void *dummy2, void *dummy3)
|
|
{
|
|
ARG_UNUSED(dummy1);
|
|
ARG_UNUSED(dummy2);
|
|
ARG_UNUSED(dummy3);
|
|
|
|
/* invoke routine to ping-pong hello messages with threadB */
|
|
helloLoop(__func__, &threadA_sem, &threadB_sem);
|
|
}
|
|
|
|
void main(void)
|
|
{
|
|
k_thread_create(&threadA_data, threadA_stack_area,
|
|
K_THREAD_STACK_SIZEOF(threadA_stack_area),
|
|
threadA, NULL, NULL, NULL,
|
|
PRIORITY, 0, K_FOREVER);
|
|
k_thread_name_set(&threadA_data, "thread_a");
|
|
#if PIN_THREADS
|
|
k_thread_cpu_mask_clear(&threadA_data);
|
|
k_thread_cpu_mask_enable(&threadA_data, 0);
|
|
#endif
|
|
|
|
k_thread_create(&threadB_data, threadB_stack_area,
|
|
K_THREAD_STACK_SIZEOF(threadB_stack_area),
|
|
threadB, NULL, NULL, NULL,
|
|
PRIORITY, 0, K_FOREVER);
|
|
k_thread_name_set(&threadB_data, "thread_b");
|
|
#if PIN_THREADS
|
|
k_thread_cpu_mask_clear(&threadB_data);
|
|
k_thread_cpu_mask_enable(&threadB_data, 1);
|
|
#endif
|
|
|
|
k_thread_start(&threadA_data);
|
|
k_thread_start(&threadB_data);
|
|
}
|