zephyr/subsys/net/ip/net_shell.c
Jukka Rissanen 139aab2975 net: pkt: Show buffer allocations only when needed
The net-shell "net allocs" command should print network buffer
allocations even if network packet debugging is not enabled.
This is how it used to work earlier but the behaviour got lost
at some point. So user needs to set CONFIG_NET_DEBUG_NET_PKT_ALLOC
in order to see the buffer allocations. The option will be enabled
by default if network packet log level is set to DBG.
The reason for a separate option is that the network packet debug
logging prints just too much data and it is very difficult to
track allocations when that happens.

Signed-off-by: Jukka Rissanen <jukka.rissanen@linux.intel.com>
2018-12-14 13:49:04 +02:00

4410 lines
110 KiB
C

/** @file
* @brief Network shell module
*
* Provide some networking shell commands that can be useful to applications.
*/
/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <logging/log.h>
LOG_MODULE_REGISTER(net_shell, LOG_LEVEL_DBG);
#include <zephyr.h>
#include <stdlib.h>
#include <stdio.h>
#include <shell/shell.h>
#include <shell/shell_uart.h>
#include <net/net_if.h>
#include <net/dns_resolve.h>
#include <misc/printk.h>
#include "route.h"
#include "icmpv6.h"
#include "icmpv4.h"
#include "connection.h"
#if defined(CONFIG_NET_TCP)
#include <net/tcp.h>
#include "tcp_internal.h"
#endif
#include "ipv6.h"
#if defined(CONFIG_HTTP)
#include <net/http.h>
#endif
#if defined(CONFIG_NET_APP)
#include <net/net_app.h>
#endif
#if defined(CONFIG_NET_RPL)
#include "rpl.h"
#endif
#if defined(CONFIG_NET_ARP)
#include "ethernet/arp.h"
#endif
#if defined(CONFIG_NET_L2_ETHERNET)
#include <net/ethernet.h>
#endif
#if defined(CONFIG_NET_L2_ETHERNET_MGMT)
#include <net/ethernet_mgmt.h>
#endif
#if defined(CONFIG_NET_GPTP)
#include <net/gptp.h>
#include "ethernet/gptp/gptp_messages.h"
#include "ethernet/gptp/gptp_md.h"
#include "ethernet/gptp/gptp_state.h"
#include "ethernet/gptp/gptp_data_set.h"
#include "ethernet/gptp/gptp_private.h"
#endif
#include "net_shell.h"
#include "net_stats.h"
#define PR(fmt, ...) \
shell_fprintf(shell, SHELL_NORMAL, fmt, ##__VA_ARGS__)
#define PR_SHELL(shell, fmt, ...) \
shell_fprintf(shell, SHELL_NORMAL, fmt, ##__VA_ARGS__)
#define PR_ERROR(fmt, ...) \
shell_fprintf(shell, SHELL_ERROR, fmt, ##__VA_ARGS__)
#define PR_INFO(fmt, ...) \
shell_fprintf(shell, SHELL_INFO, fmt, ##__VA_ARGS__)
#define PR_WARNING(fmt, ...) \
shell_fprintf(shell, SHELL_WARNING, fmt, ##__VA_ARGS__)
#include "net_private.h"
struct net_shell_user_data {
const struct shell *shell;
void *user_data;
};
/* net_stack dedicated section limiters */
extern struct net_stack_info __net_stack_start[];
extern struct net_stack_info __net_stack_end[];
static inline const char *addrtype2str(enum net_addr_type addr_type)
{
switch (addr_type) {
case NET_ADDR_ANY:
return "<unknown type>";
case NET_ADDR_AUTOCONF:
return "autoconf";
case NET_ADDR_DHCP:
return "DHCP";
case NET_ADDR_MANUAL:
return "manual";
case NET_ADDR_OVERRIDABLE:
return "overridable";
}
return "<invalid type>";
}
static inline const char *addrstate2str(enum net_addr_state addr_state)
{
switch (addr_state) {
case NET_ADDR_ANY_STATE:
return "<unknown state>";
case NET_ADDR_TENTATIVE:
return "tentative";
case NET_ADDR_PREFERRED:
return "preferred";
case NET_ADDR_DEPRECATED:
return "deprecated";
}
return "<invalid state>";
}
static const char *iface2str(struct net_if *iface, const char **extra)
{
#ifdef CONFIG_NET_L2_IEEE802154
if (net_if_l2(iface) == &NET_L2_GET_NAME(IEEE802154)) {
if (extra) {
*extra = "=============";
}
return "IEEE 802.15.4";
}
#endif
#ifdef CONFIG_NET_L2_ETHERNET
if (net_if_l2(iface) == &NET_L2_GET_NAME(ETHERNET)) {
if (extra) {
*extra = "========";
}
return "Ethernet";
}
#endif
#ifdef CONFIG_NET_L2_DUMMY
if (net_if_l2(iface) == &NET_L2_GET_NAME(DUMMY)) {
if (extra) {
*extra = "=====";
}
return "Dummy";
}
#endif
#ifdef CONFIG_NET_L2_BT
if (net_if_l2(iface) == &NET_L2_GET_NAME(BLUETOOTH)) {
if (extra) {
*extra = "=========";
}
return "Bluetooth";
}
#endif
#ifdef CONFIG_NET_OFFLOAD
if (net_if_is_ip_offloaded(iface)) {
if (extra) {
*extra = "==========";
}
return "IP Offload";
}
#endif
if (extra) {
*extra = "==============";
}
return "<unknown type>";
}
#if defined(CONFIG_NET_L2_ETHERNET)
struct ethernet_capabilities {
enum ethernet_hw_caps capability;
const char * const description;
};
#define EC(cap, desc) { .capability = cap, .description = desc }
static struct ethernet_capabilities eth_hw_caps[] = {
EC(ETHERNET_HW_TX_CHKSUM_OFFLOAD, "TX checksum offload"),
EC(ETHERNET_HW_RX_CHKSUM_OFFLOAD, "RX checksum offload"),
EC(ETHERNET_HW_VLAN, "Virtual LAN"),
EC(ETHERNET_AUTO_NEGOTIATION_SET, "Auto negotiation"),
EC(ETHERNET_LINK_10BASE_T, "10 Mbits"),
EC(ETHERNET_LINK_100BASE_T, "100 Mbits"),
EC(ETHERNET_LINK_1000BASE_T, "1 Gbits"),
EC(ETHERNET_DUPLEX_SET, "Half/full duplex"),
EC(ETHERNET_PTP, "IEEE 802.1AS gPTP clock"),
EC(ETHERNET_QAV, "IEEE 802.1Qav (credit shaping)"),
EC(ETHERNET_PROMISC_MODE, "Promiscuous mode"),
EC(ETHERNET_PRIORITY_QUEUES, "Priority queues"),
EC(ETHERNET_HW_FILTERING, "MAC address filtering"),
};
static void print_supported_ethernet_capabilities(
const struct shell *shell, struct net_if *iface)
{
enum ethernet_hw_caps caps = net_eth_get_hw_capabilities(iface);
int i;
for (i = 0; i < ARRAY_SIZE(eth_hw_caps); i++) {
if (caps & eth_hw_caps[i].capability) {
PR("\t%s\n", eth_hw_caps[i].description);
}
}
}
#endif /* CONFIG_NET_L2_ETHERNET */
static void iface_cb(struct net_if *iface, void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
#if defined(CONFIG_NET_IPV6)
struct net_if_ipv6_prefix *prefix;
struct net_if_router *router;
struct net_if_ipv6 *ipv6;
#endif
#if defined(CONFIG_NET_IPV4)
struct net_if_ipv4 *ipv4;
#endif
#if defined(CONFIG_NET_VLAN)
struct ethernet_context *eth_ctx;
#endif
struct net_if_addr *unicast;
struct net_if_mcast_addr *mcast;
#if defined(CONFIG_NET_L2_ETHERNET_MGMT)
struct ethernet_req_params params;
int ret;
#endif
const char *extra;
int i, count;
if (data->user_data && data->user_data != iface) {
return;
}
PR("\nInterface %p (%s) [%d]\n", iface, iface2str(iface, &extra),
net_if_get_by_iface(iface));
PR("===========================%s\n", extra);
if (!net_if_is_up(iface)) {
PR_INFO("Interface is down.\n");
return;
}
if (net_if_get_link_addr(iface) &&
net_if_get_link_addr(iface)->addr) {
PR("Link addr : %s\n",
net_sprint_ll_addr(net_if_get_link_addr(iface)->addr,
net_if_get_link_addr(iface)->len));
}
PR("MTU : %d\n", net_if_get_mtu(iface));
#if defined(CONFIG_NET_L2_ETHERNET_MGMT)
count = 0;
ret = net_mgmt(NET_REQUEST_ETHERNET_GET_PRIORITY_QUEUES_NUM,
iface,
&params, sizeof(struct ethernet_req_params));
if (!ret && params.priority_queues_num) {
count = params.priority_queues_num;
PR("Priority queues:\n");
for (i = 0; i < count; ++i) {
params.qav_param.queue_id = i;
params.qav_param.type = ETHERNET_QAV_PARAM_TYPE_STATUS;
ret = net_mgmt(NET_REQUEST_ETHERNET_GET_QAV_PARAM,
iface,
&params,
sizeof(struct ethernet_req_params));
PR("\t%d: Qav ", i);
if (ret) {
PR("not supported\n");
} else {
PR("%s\n",
params.qav_param.enabled ?
"enabled" :
"disabled");
}
}
}
#endif
#if defined(CONFIG_NET_PROMISCUOUS_MODE)
PR("Promiscuous mode : %s\n",
net_if_is_promisc(iface) ? "enabled" : "disabled");
#endif
#if defined(CONFIG_NET_VLAN)
if (net_if_l2(iface) == &NET_L2_GET_NAME(ETHERNET)) {
eth_ctx = net_if_l2_data(iface);
if (eth_ctx->vlan_enabled) {
for (i = 0; i < CONFIG_NET_VLAN_COUNT; i++) {
if (eth_ctx->vlan[i].iface != iface ||
eth_ctx->vlan[i].tag ==
NET_VLAN_TAG_UNSPEC) {
continue;
}
PR("VLAN tag : %d (0x%x)\n",
eth_ctx->vlan[i].tag,
eth_ctx->vlan[i].tag);
}
} else {
PR("VLAN not enabled\n");
}
}
#endif
#ifdef CONFIG_NET_L2_ETHERNET
if (net_if_l2(iface) == &NET_L2_GET_NAME(ETHERNET)) {
PR("Ethernet capabilities supported:\n");
print_supported_ethernet_capabilities(shell, iface);
}
#endif /* CONFIG_NET_L2_ETHERNET */
#if defined(CONFIG_NET_IPV6)
count = 0;
ipv6 = iface->config.ip.ipv6;
PR("IPv6 unicast addresses (max %d):\n", NET_IF_MAX_IPV6_ADDR);
for (i = 0; ipv6 && i < NET_IF_MAX_IPV6_ADDR; i++) {
unicast = &ipv6->unicast[i];
if (!unicast->is_used) {
continue;
}
PR("\t%s %s %s%s\n",
net_sprint_ipv6_addr(&unicast->address.in6_addr),
addrtype2str(unicast->addr_type),
addrstate2str(unicast->addr_state),
unicast->is_infinite ? " infinite" : "");
count++;
}
if (count == 0) {
PR("\t<none>\n");
}
count = 0;
PR("IPv6 multicast addresses (max %d):\n", NET_IF_MAX_IPV6_MADDR);
for (i = 0; ipv6 && i < NET_IF_MAX_IPV6_MADDR; i++) {
mcast = &ipv6->mcast[i];
if (!mcast->is_used) {
continue;
}
PR("\t%s\n", net_sprint_ipv6_addr(&mcast->address.in6_addr));
count++;
}
if (count == 0) {
PR("\t<none>\n");
}
count = 0;
PR("IPv6 prefixes (max %d):\n", NET_IF_MAX_IPV6_PREFIX);
for (i = 0; ipv6 && i < NET_IF_MAX_IPV6_PREFIX; i++) {
prefix = &ipv6->prefix[i];
if (!prefix->is_used) {
continue;
}
PR("\t%s/%d%s\n",
net_sprint_ipv6_addr(&prefix->prefix),
prefix->len, prefix->is_infinite ? " infinite" : "");
count++;
}
if (count == 0) {
PR("\t<none>\n");
}
router = net_if_ipv6_router_find_default(iface, NULL);
if (router) {
PR("IPv6 default router :\n");
PR("\t%s%s\n",
net_sprint_ipv6_addr(&router->address.in6_addr),
router->is_infinite ? " infinite" : "");
}
if (ipv6) {
PR("IPv6 hop limit : %d\n",
ipv6->hop_limit);
PR("IPv6 base reachable time : %d\n",
ipv6->base_reachable_time);
PR("IPv6 reachable time : %d\n",
ipv6->reachable_time);
PR("IPv6 retransmit timer : %d\n",
ipv6->retrans_timer);
}
#endif /* CONFIG_NET_IPV6 */
#if defined(CONFIG_NET_IPV4)
/* No need to print IPv4 information for interface that does not
* support that protocol.
*/
if (
#if defined(CONFIG_NET_L2_IEEE802154)
(net_if_l2(iface) == &NET_L2_GET_NAME(IEEE802154)) ||
#endif
#if defined(CONFIG_NET_L2_BT)
(net_if_l2(iface) == &NET_L2_GET_NAME(BLUETOOTH)) ||
#endif
0) {
PR_WARNING("IPv4 not supported for this interface.\n");
return;
}
count = 0;
ipv4 = iface->config.ip.ipv4;
PR("IPv4 unicast addresses (max %d):\n", NET_IF_MAX_IPV4_ADDR);
for (i = 0; ipv4 && i < NET_IF_MAX_IPV4_ADDR; i++) {
unicast = &ipv4->unicast[i];
if (!unicast->is_used) {
continue;
}
PR("\t%s %s %s%s\n",
net_sprint_ipv4_addr(&unicast->address.in_addr),
addrtype2str(unicast->addr_type),
addrstate2str(unicast->addr_state),
unicast->is_infinite ? " infinite" : "");
count++;
}
if (count == 0) {
PR("\t<none>\n");
}
count = 0;
PR("IPv4 multicast addresses (max %d):\n", NET_IF_MAX_IPV4_MADDR);
for (i = 0; ipv4 && i < NET_IF_MAX_IPV4_MADDR; i++) {
mcast = &ipv4->mcast[i];
if (!mcast->is_used) {
continue;
}
PR("\t%s\n", net_sprint_ipv4_addr(&mcast->address.in_addr));
count++;
}
if (count == 0) {
PR("\t<none>\n");
}
if (ipv4) {
PR("IPv4 gateway : %s\n",
net_sprint_ipv4_addr(&ipv4->gw));
PR("IPv4 netmask : %s\n",
net_sprint_ipv4_addr(&ipv4->netmask));
}
#endif /* CONFIG_NET_IPV4 */
#if defined(CONFIG_NET_DHCPV4)
PR("DHCPv4 lease time : %u\n",
iface->config.dhcpv4.lease_time);
PR("DHCPv4 renew time : %u\n",
iface->config.dhcpv4.renewal_time);
PR("DHCPv4 server : %s\n",
net_sprint_ipv4_addr(&iface->config.dhcpv4.server_id));
PR("DHCPv4 requested : %s\n",
net_sprint_ipv4_addr(&iface->config.dhcpv4.requested_ip));
PR("DHCPv4 state : %s\n",
net_dhcpv4_state_name(iface->config.dhcpv4.state));
PR("DHCPv4 attempts : %d\n",
iface->config.dhcpv4.attempts);
#endif /* CONFIG_NET_DHCPV4 */
}
#if defined(CONFIG_NET_ROUTE)
static void route_cb(struct net_route_entry *entry, void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
struct net_if *iface = data->user_data;
struct net_route_nexthop *nexthop_route;
int count;
if (entry->iface != iface) {
return;
}
PR("IPv6 prefix : %s/%d\n", net_sprint_ipv6_addr(&entry->addr),
entry->prefix_len);
count = 0;
SYS_SLIST_FOR_EACH_CONTAINER(&entry->nexthop, nexthop_route, node) {
struct net_linkaddr_storage *lladdr;
if (!nexthop_route->nbr) {
continue;
}
PR("\tneighbor : %p\t", nexthop_route->nbr);
if (nexthop_route->nbr->idx == NET_NBR_LLADDR_UNKNOWN) {
PR("addr : <unknown>\n");
} else {
lladdr = net_nbr_get_lladdr(nexthop_route->nbr->idx);
PR("addr : %s\n", net_sprint_ll_addr(lladdr->addr,
lladdr->len));
}
count++;
}
if (count == 0) {
PR("\t<none>\n");
}
}
static void iface_per_route_cb(struct net_if *iface, void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
const char *extra;
PR("\nIPv6 routes for interface %p (%s)\n", iface,
iface2str(iface, &extra));
PR("=======================================%s\n", extra);
data->user_data = iface;
net_route_foreach(route_cb, data);
}
#endif /* CONFIG_NET_ROUTE */
#if defined(CONFIG_NET_ROUTE_MCAST)
static void route_mcast_cb(struct net_route_entry_mcast *entry,
void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
struct net_if *iface = data->user_data;
const char *extra;
if (entry->iface != iface) {
return;
}
PR("IPv6 multicast route %p for interface %p (%s)\n", entry,
iface, iface2str(iface, &extra));
PR("==========================================================="
"%s\n", extra);
PR("IPv6 group : %s\n", net_sprint_ipv6_addr(&entry->group));
PR("Lifetime : %u\n", entry->lifetime);
}
static void iface_per_mcast_route_cb(struct net_if *iface, void *user_data)
{
struct net_shell_user_data *data = user_data;
data->user_data = iface;
net_route_mcast_foreach(route_mcast_cb, NULL, data);
}
#endif /* CONFIG_NET_ROUTE_MCAST */
#if defined(CONFIG_NET_STATISTICS)
#if NET_TC_COUNT > 1
static const char *priority2str(enum net_priority priority)
{
switch (priority) {
case NET_PRIORITY_BK:
return "BK"; /* Background */
case NET_PRIORITY_BE:
return "BE"; /* Best effort */
case NET_PRIORITY_EE:
return "EE"; /* Excellent effort */
case NET_PRIORITY_CA:
return "CA"; /* Critical applications */
case NET_PRIORITY_VI:
return "VI"; /* Video, < 100 ms latency and jitter */
case NET_PRIORITY_VO:
return "VO"; /* Voice, < 10 ms latency and jitter */
case NET_PRIORITY_IC:
return "IC"; /* Internetwork control */
case NET_PRIORITY_NC:
return "NC"; /* Network control */
}
return "??";
}
#endif
#if defined(CONFIG_NET_STATISTICS_ETHERNET) && \
defined(CONFIG_NET_STATISTICS_USER_API)
static void print_eth_stats(struct net_if *iface, struct net_stats_eth *data,
const struct shell *shell)
{
PR("Statistics for Ethernet interface %p [%d]\n", iface,
net_if_get_by_iface(iface));
PR("Bytes received : %u\n", data->bytes.received);
PR("Bytes sent : %u\n", data->bytes.sent);
PR("Packets received : %u\n", data->pkts.rx);
PR("Packets sent : %u\n", data->pkts.tx);
PR("Bcast received : %u\n", data->broadcast.rx);
PR("Bcast sent : %u\n", data->broadcast.tx);
PR("Mcast received : %u\n", data->multicast.rx);
PR("Mcast sent : %u\n", data->multicast.tx);
#if defined(CONFIG_NET_STATISTICS_ETHERNET_VENDOR)
if (data->vendor) {
PR("Vendor specific statistics for Ethernet "
"interface %p [%d]:\n",
iface, net_if_get_by_iface(iface));
size_t i = 0;
do {
PR("%s : %u\n", data->vendor[i].key,
data->vendor[i].value);
i++;
} while (data->vendor[i].key);
}
#endif /* CONFIG_NET_STATISTICS_ETHERNET_VENDOR */
}
#endif /* CONFIG_NET_STATISTICS_ETHERNET && CONFIG_NET_STATISTICS_USER_API */
static void net_shell_print_statistics(struct net_if *iface, void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
if (iface) {
const char *extra;
PR("\nInterface %p (%s) [%d]\n", iface,
iface2str(iface, &extra), net_if_get_by_iface(iface));
PR("===========================%s\n", extra);
} else {
PR("\nGlobal statistics\n");
PR("=================\n");
}
#if defined(CONFIG_NET_IPV6)
PR("IPv6 recv %d\tsent\t%d\tdrop\t%d\tforwarded\t%d\n",
GET_STAT(iface, ipv6.recv),
GET_STAT(iface, ipv6.sent),
GET_STAT(iface, ipv6.drop),
GET_STAT(iface, ipv6.forwarded));
#if defined(CONFIG_NET_IPV6_ND)
PR("IPv6 ND recv %d\tsent\t%d\tdrop\t%d\n",
GET_STAT(iface, ipv6_nd.recv),
GET_STAT(iface, ipv6_nd.sent),
GET_STAT(iface, ipv6_nd.drop));
#endif /* CONFIG_NET_IPV6_ND */
#if defined(CONFIG_NET_STATISTICS_MLD)
PR("IPv6 MLD recv %d\tsent\t%d\tdrop\t%d\n",
GET_STAT(iface, ipv6_mld.recv),
GET_STAT(iface, ipv6_mld.sent),
GET_STAT(iface, ipv6_mld.drop));
#endif /* CONFIG_NET_STATISTICS_MLD */
#endif /* CONFIG_NET_IPV6 */
#if defined(CONFIG_NET_IPV4)
PR("IPv4 recv %d\tsent\t%d\tdrop\t%d\tforwarded\t%d\n",
GET_STAT(iface, ipv4.recv),
GET_STAT(iface, ipv4.sent),
GET_STAT(iface, ipv4.drop),
GET_STAT(iface, ipv4.forwarded));
#endif /* CONFIG_NET_IPV4 */
PR("IP vhlerr %d\thblener\t%d\tlblener\t%d\n",
GET_STAT(iface, ip_errors.vhlerr),
GET_STAT(iface, ip_errors.hblenerr),
GET_STAT(iface, ip_errors.lblenerr));
PR("IP fragerr %d\tchkerr\t%d\tprotoer\t%d\n",
GET_STAT(iface, ip_errors.fragerr),
GET_STAT(iface, ip_errors.chkerr),
GET_STAT(iface, ip_errors.protoerr));
PR("ICMP recv %d\tsent\t%d\tdrop\t%d\n",
GET_STAT(iface, icmp.recv),
GET_STAT(iface, icmp.sent),
GET_STAT(iface, icmp.drop));
PR("ICMP typeer %d\tchkerr\t%d\n",
GET_STAT(iface, icmp.typeerr),
GET_STAT(iface, icmp.chkerr));
#if defined(CONFIG_NET_UDP)
PR("UDP recv %d\tsent\t%d\tdrop\t%d\n",
GET_STAT(iface, udp.recv),
GET_STAT(iface, udp.sent),
GET_STAT(iface, udp.drop));
PR("UDP chkerr %d\n",
GET_STAT(iface, udp.chkerr));
#endif
#if defined(CONFIG_NET_STATISTICS_TCP)
PR("TCP bytes recv %u\tsent\t%d\n",
GET_STAT(iface, tcp.bytes.received),
GET_STAT(iface, tcp.bytes.sent));
PR("TCP seg recv %d\tsent\t%d\tdrop\t%d\n",
GET_STAT(iface, tcp.recv),
GET_STAT(iface, tcp.sent),
GET_STAT(iface, tcp.drop));
PR("TCP seg resent %d\tchkerr\t%d\tackerr\t%d\n",
GET_STAT(iface, tcp.resent),
GET_STAT(iface, tcp.chkerr),
GET_STAT(iface, tcp.ackerr));
PR("TCP seg rsterr %d\trst\t%d\tre-xmit\t%d\n",
GET_STAT(iface, tcp.rsterr),
GET_STAT(iface, tcp.rst),
GET_STAT(iface, tcp.rexmit));
PR("TCP conn drop %d\tconnrst\t%d\n",
GET_STAT(iface, tcp.conndrop),
GET_STAT(iface, tcp.connrst));
#endif
#if defined(CONFIG_NET_STATISTICS_RPL)
PR("RPL DIS recv %d\tsent\t%d\tdrop\t%d\n",
GET_STAT(iface, rpl.dis.recv),
GET_STAT(iface, rpl.dis.sent),
GET_STAT(iface, rpl.dis.drop));
PR("RPL DIO recv %d\tsent\t%d\tdrop\t%d\n",
GET_STAT(iface, rpl.dio.recv),
GET_STAT(iface, rpl.dio.sent),
GET_STAT(iface, rpl.dio.drop));
PR("RPL DAO recv %d\tsent\t%d\tdrop\t%d\tforwarded\t%d\n",
GET_STAT(iface, rpl.dao.recv),
GET_STAT(iface, rpl.dao.sent),
GET_STAT(iface, rpl.dao.drop),
GET_STAT(iface, rpl.dao.forwarded));
PR("RPL DAOACK rcv %d\tsent\t%d\tdrop\t%d\n",
GET_STAT(iface, rpl.dao_ack.recv),
GET_STAT(iface, rpl.dao_ack.sent),
GET_STAT(iface, rpl.dao_ack.drop));
PR("RPL overflows %d\tl-repairs\t%d\tg-repairs\t%d\n",
GET_STAT(iface, rpl.mem_overflows),
GET_STAT(iface, rpl.local_repairs),
GET_STAT(iface, rpl.global_repairs));
PR("RPL malformed %d\tresets \t%d\tp-switch\t%d\n",
GET_STAT(iface, rpl.malformed_msgs),
GET_STAT(iface, rpl.resets),
GET_STAT(iface, rpl.parent_switch));
PR("RPL f-errors %d\tl-errors\t%d\tl-warnings\t%d\n",
GET_STAT(iface, rpl.forward_errors),
GET_STAT(iface, rpl.loop_errors),
GET_STAT(iface, rpl.loop_warnings));
PR("RPL r-repairs %d\n",
GET_STAT(iface, rpl.root_repairs));
#endif
PR("Bytes received %u\n", GET_STAT(iface, bytes.received));
PR("Bytes sent %u\n", GET_STAT(iface, bytes.sent));
PR("Processing err %d\n", GET_STAT(iface, processing_error));
#if NET_TC_COUNT > 1
{
int i;
#if NET_TC_TX_COUNT > 1
PR("TX traffic class statistics:\n");
PR("TC Priority\tSent pkts\tbytes\n");
for (i = 0; i < NET_TC_TX_COUNT; i++) {
PR("[%d] %s (%d)\t%d\t\t%d\n", i,
priority2str(GET_STAT(iface, tc.sent[i].priority)),
GET_STAT(iface, tc.sent[i].priority),
GET_STAT(iface, tc.sent[i].pkts),
GET_STAT(iface, tc.sent[i].bytes));
}
#endif
#if NET_TC_RX_COUNT > 1
PR("RX traffic class statistics:\n");
PR("TC Priority\tRecv pkts\tbytes\n");
for (i = 0; i < NET_TC_RX_COUNT; i++) {
PR("[%d] %s (%d)\t%d\t\t%d\n", i,
priority2str(GET_STAT(iface, tc.recv[i].priority)),
GET_STAT(iface, tc.recv[i].priority),
GET_STAT(iface, tc.recv[i].pkts),
GET_STAT(iface, tc.recv[i].bytes));
}
}
#endif
#endif /* NET_TC_COUNT > 1 */
#if defined(CONFIG_NET_STATISTICS_ETHERNET) && \
defined(CONFIG_NET_STATISTICS_USER_API)
if (iface && net_if_l2(iface) == &NET_L2_GET_NAME(ETHERNET)) {
struct net_stats_eth eth_data;
int ret;
ret = net_mgmt(NET_REQUEST_STATS_GET_ETHERNET, iface,
&eth_data, sizeof(eth_data));
if (!ret) {
print_eth_stats(iface, &eth_data, shell);
}
}
#endif /* CONFIG_NET_STATISTICS_ETHERNET && CONFIG_NET_STATISTICS_USER_API */
}
#endif /* CONFIG_NET_STATISTICS */
static void get_addresses(struct net_context *context,
char addr_local[], int local_len,
char addr_remote[], int remote_len)
{
#if defined(CONFIG_NET_IPV6)
if (context->local.family == AF_INET6) {
snprintk(addr_local, local_len, "[%s]:%u",
net_sprint_ipv6_addr(
net_sin6_ptr(&context->local)->sin6_addr),
ntohs(net_sin6_ptr(&context->local)->sin6_port));
snprintk(addr_remote, remote_len, "[%s]:%u",
net_sprint_ipv6_addr(
&net_sin6(&context->remote)->sin6_addr),
ntohs(net_sin6(&context->remote)->sin6_port));
} else
#endif
#if defined(CONFIG_NET_IPV4)
if (context->local.family == AF_INET) {
snprintk(addr_local, local_len, "%s:%d",
net_sprint_ipv4_addr(
net_sin_ptr(&context->local)->sin_addr),
ntohs(net_sin_ptr(&context->local)->sin_port));
snprintk(addr_remote, remote_len, "%s:%d",
net_sprint_ipv4_addr(
&net_sin(&context->remote)->sin_addr),
ntohs(net_sin(&context->remote)->sin_port));
} else
#endif
if (context->local.family == AF_UNSPEC) {
snprintk(addr_local, local_len, "AF_UNSPEC");
} else {
snprintk(addr_local, local_len, "AF_UNK(%d)",
context->local.family);
}
}
static void context_cb(struct net_context *context, void *user_data)
{
#if defined(CONFIG_NET_IPV6) && !defined(CONFIG_NET_IPV4)
#define ADDR_LEN NET_IPV6_ADDR_LEN
#elif defined(CONFIG_NET_IPV4) && !defined(CONFIG_NET_IPV6)
#define ADDR_LEN NET_IPV4_ADDR_LEN
#else
#define ADDR_LEN NET_IPV6_ADDR_LEN
#endif
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
int *count = data->user_data;
/* +7 for []:port */
char addr_local[ADDR_LEN + 7];
char addr_remote[ADDR_LEN + 7] = "";
get_addresses(context, addr_local, sizeof(addr_local),
addr_remote, sizeof(addr_remote));
PR("[%2d] %p\t%p %c%c%c %16s\t%16s\n",
(*count) + 1, context,
net_context_get_iface(context),
net_context_get_family(context) == AF_INET6 ? '6' : '4',
net_context_get_type(context) == SOCK_DGRAM ? 'D' : 'S',
net_context_get_ip_proto(context) == IPPROTO_UDP ? 'U' : 'T',
addr_local, addr_remote);
(*count)++;
}
#if CONFIG_NET_CONN_LOG_LEVEL >= LOG_LEVEL_DBG
static void conn_handler_cb(struct net_conn *conn, void *user_data)
{
#if defined(CONFIG_NET_IPV6) && !defined(CONFIG_NET_IPV4)
#define ADDR_LEN NET_IPV6_ADDR_LEN
#elif defined(CONFIG_NET_IPV4) && !defined(CONFIG_NET_IPV6)
#define ADDR_LEN NET_IPV4_ADDR_LEN
#else
#define ADDR_LEN NET_IPV6_ADDR_LEN
#endif
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
int *count = data->user_data;
/* +7 for []:port */
char addr_local[ADDR_LEN + 7];
char addr_remote[ADDR_LEN + 7] = "";
#if defined(CONFIG_NET_IPV6)
if (conn->local_addr.sa_family == AF_INET6) {
snprintk(addr_local, sizeof(addr_local), "[%s]:%u",
net_sprint_ipv6_addr(
&net_sin6(&conn->local_addr)->sin6_addr),
ntohs(net_sin6(&conn->local_addr)->sin6_port));
snprintk(addr_remote, sizeof(addr_remote), "[%s]:%u",
net_sprint_ipv6_addr(
&net_sin6(&conn->remote_addr)->sin6_addr),
ntohs(net_sin6(&conn->remote_addr)->sin6_port));
} else
#endif
#if defined(CONFIG_NET_IPV4)
if (conn->local_addr.sa_family == AF_INET) {
snprintk(addr_local, sizeof(addr_local), "%s:%d",
net_sprint_ipv4_addr(
&net_sin(&conn->local_addr)->sin_addr),
ntohs(net_sin(&conn->local_addr)->sin_port));
snprintk(addr_remote, sizeof(addr_remote), "%s:%d",
net_sprint_ipv4_addr(
&net_sin(&conn->remote_addr)->sin_addr),
ntohs(net_sin(&conn->remote_addr)->sin_port));
} else
#endif
if (conn->local_addr.sa_family == AF_UNSPEC) {
snprintk(addr_local, sizeof(addr_local), "AF_UNSPEC");
} else {
snprintk(addr_local, sizeof(addr_local), "AF_UNK(%d)",
conn->local_addr.sa_family);
}
PR("[%2d] %p %p\t%s\t%16s\t%16s\n",
(*count) + 1, conn, conn->cb, net_proto2str(conn->proto),
addr_local, addr_remote);
(*count)++;
}
#endif /* CONFIG_NET_CONN_LOG_LEVEL >= LOG_LEVEL_DBG */
#if defined(CONFIG_NET_TCP)
static void tcp_cb(struct net_tcp *tcp, void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
int *count = data->user_data;
u16_t recv_mss = net_tcp_get_recv_mss(tcp);
PR("%p %p %5u %5u %10u %10u %5u %s\n",
tcp, tcp->context,
ntohs(net_sin6_ptr(&tcp->context->local)->sin6_port),
ntohs(net_sin6(&tcp->context->remote)->sin6_port),
tcp->send_seq, tcp->send_ack, recv_mss,
net_tcp_state_str(net_tcp_get_state(tcp)));
(*count)++;
}
#if CONFIG_NET_TCP_LOG_LEVEL >= LOG_LEVEL_DBG
static void tcp_sent_list_cb(struct net_tcp *tcp, void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
int *printed = data->user_data;
struct net_pkt *pkt;
struct net_pkt *tmp;
if (sys_slist_is_empty(&tcp->sent_list)) {
return;
}
if (!*printed) {
PR("\nTCP packets waiting ACK:\n");
PR("TCP net_pkt[ref/totlen]->net_buf[ref/len]..."
"\n");
}
PR("%p ", tcp);
SYS_SLIST_FOR_EACH_CONTAINER_SAFE(&tcp->sent_list, pkt, tmp,
sent_list) {
struct net_buf *frag = pkt->frags;
if (!*printed) {
PR("%p[%d/%zd]", pkt, pkt->ref,
net_pkt_get_len(pkt));
*printed = true;
} else {
PR(" %p[%d/%zd]",
pkt, pkt->ref, net_pkt_get_len(pkt));
}
if (frag) {
PR("->");
}
while (frag) {
PR("%p[%d/%d]", frag, frag->ref, frag->len);
frag = frag->frags;
if (frag) {
PR("->");
}
}
PR("\n");
}
*printed = true;
}
#endif /* CONFIG_NET_TCP_LOG_LEVEL >= LOG_LEVEL_DBG */
#endif
#if defined(CONFIG_NET_IPV6_FRAGMENT)
static void ipv6_frag_cb(struct net_ipv6_reassembly *reass,
void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
int *count = data->user_data;
char src[ADDR_LEN];
int i;
if (!*count) {
PR("\nIPv6 reassembly Id Remain "
"Src \tDst\n");
}
snprintk(src, ADDR_LEN, "%s", net_sprint_ipv6_addr(&reass->src));
PR("%p 0x%08x %5d %16s\t%16s\n",
reass, reass->id,
k_delayed_work_remaining_get(&reass->timer),
src, net_sprint_ipv6_addr(&reass->dst));
for (i = 0; i < NET_IPV6_FRAGMENTS_MAX_PKT; i++) {
if (reass->pkt[i]) {
struct net_buf *frag = reass->pkt[i]->frags;
PR("[%d] pkt %p->", i, reass->pkt[i]);
while (frag) {
PR("%p", frag);
frag = frag->frags;
if (frag) {
PR("->");
}
}
PR("\n");
}
}
(*count)++;
}
#endif /* CONFIG_NET_IPV6_FRAGMENT */
#if defined(CONFIG_NET_DEBUG_NET_PKT_ALLOC)
static void allocs_cb(struct net_pkt *pkt,
struct net_buf *buf,
const char *func_alloc,
int line_alloc,
const char *func_free,
int line_free,
bool in_use,
void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
const char *str;
if (in_use) {
str = "used";
} else {
if (func_alloc) {
str = "free";
} else {
str = "avail";
}
}
if (buf) {
goto buf;
}
if (func_alloc) {
if (in_use) {
PR("%p/%d\t%5s\t%5s\t%s():%d\n",
pkt, pkt->ref, str,
net_pkt_slab2str(pkt->slab),
func_alloc, line_alloc);
} else {
PR("%p\t%5s\t%5s\t%s():%d -> %s():%d\n",
pkt, str, net_pkt_slab2str(pkt->slab),
func_alloc, line_alloc, func_free,
line_free);
}
}
return;
buf:
if (func_alloc) {
struct net_buf_pool *pool = net_buf_pool_get(buf->pool_id);
if (in_use) {
PR("%p/%d\t%5s\t%5s\t%s():%d\n",
buf, buf->ref,
str, net_pkt_pool2str(pool), func_alloc,
line_alloc);
} else {
PR("%p\t%5s\t%5s\t%s():%d -> %s():%d\n",
buf, str, net_pkt_pool2str(pool),
func_alloc, line_alloc, func_free,
line_free);
}
}
}
#endif /* CONFIG_NET_DEBUG_NET_PKT_ALLOC */
/* Put the actual shell commands after this */
static int cmd_net_allocs(const struct shell *shell, size_t argc, char *argv[])
{
#if defined(CONFIG_NET_DEBUG_NET_PKT_ALLOC)
struct net_shell_user_data user_data;
#endif
ARG_UNUSED(argc);
ARG_UNUSED(argv);
#if defined(CONFIG_NET_DEBUG_NET_PKT_ALLOC)
user_data.shell = shell;
PR("Network memory allocations\n\n");
PR("memory\t\tStatus\tPool\tFunction alloc -> freed\n");
net_pkt_allocs_foreach(allocs_cb, &user_data);
#else
PR_INFO("Enable CONFIG_NET_DEBUG_NET_PKT_ALLOC to see allocations.\n");
#endif /* CONFIG_NET_DEBUG_NET_PKT_ALLOC */
return 0;
}
#if (CONFIG_NET_APP_LOG_LEVEL >= LOG_LEVEL_DBG) && \
(defined(CONFIG_NET_APP_SERVER) || defined(CONFIG_NET_APP_CLIENT))
#if defined(CONFIG_NET_APP_TLS) || defined(CONFIG_NET_APP_DTLS)
static void print_app_sec_info(struct net_app_ctx *ctx, const char *sec_type)
{
PR(" Security: %s Thread id: %p\n", sec_type, ctx->tls.tid);
#if defined(CONFIG_INIT_STACKS)
{
unsigned int pcnt, unused;
net_analyze_stack_get_values(
K_THREAD_STACK_BUFFER(ctx->tls.stack),
ctx->tls.stack_size,
&pcnt, &unused);
PR(" Stack: %p Size: %d bytes unused %u usage "
"%u/%d (%u %%)\n",
ctx->tls.stack, ctx->tls.stack_size,
unused, ctx->tls.stack_size - unused,
ctx->tls.stack_size, pcnt);
}
#endif /* CONFIG_INIT_STACKS */
if (ctx->tls.cert_host) {
PR(" Cert host: %s\n", ctx->tls.cert_host);
}
}
#endif /* CONFIG_NET_APP_TLS || CONFIG_NET_APP_DTLS */
static void net_app_cb(struct net_app_ctx *ctx, void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
int *count = data->user_data;
char *sec_type = "none";
char *app_type = "unknown";
char *proto = "unknown";
bool printed = false;
#if defined(CONFIG_NET_IPV6) && !defined(CONFIG_NET_IPV4)
#define ADDR_LEN NET_IPV6_ADDR_LEN
#elif defined(CONFIG_NET_IPV4) && !defined(CONFIG_NET_IPV6)
#define ADDR_LEN NET_IPV4_ADDR_LEN
#else
#define ADDR_LEN NET_IPV6_ADDR_LEN
#endif
/* +7 for []:port */
char addr_local[ADDR_LEN + 7];
char addr_remote[ADDR_LEN + 7] = "";
if (*count == 0) {
if (ctx->app_type == NET_APP_SERVER) {
PR("Network application server instances\n\n");
} else if (ctx->app_type == NET_APP_CLIENT) {
PR("Network application client instances\n\n");
} else {
PR("Invalid network application type %d\n",
ctx->app_type);
}
}
if (IS_ENABLED(CONFIG_NET_APP_TLS) && ctx->is_tls) {
if (ctx->sock_type == SOCK_STREAM) {
sec_type = "TLS";
}
}
if (IS_ENABLED(CONFIG_NET_APP_DTLS) && ctx->is_tls) {
if (ctx->sock_type == SOCK_DGRAM) {
sec_type = "DTLS";
}
}
if (ctx->app_type == NET_APP_SERVER) {
app_type = "server";
} else if (ctx->app_type == NET_APP_CLIENT) {
app_type = "client";
}
if (ctx->proto == IPPROTO_UDP) {
#if defined(CONFIG_NET_UDP)
proto = "UDP";
#else
proto = "<UDP not configured>";
#endif
}
if (ctx->proto == IPPROTO_TCP) {
#if defined(CONFIG_NET_TCP)
proto = "TCP";
#else
proto = "<TCP not configured>";
#endif
}
PR("[%2d] App-ctx: %p Status: %s Type: %s Protocol: %s\n",
*count, ctx, ctx->is_enabled ? "enabled" : "disabled",
app_type, proto);
#if defined(CONFIG_NET_APP_TLS) || defined(CONFIG_NET_APP_DTLS)
if (ctx->is_tls) {
print_app_sec_info(ctx, sec_type);
}
#endif /* CONFIG_NET_APP_TLS || CONFIG_NET_APP_DTLS */
#if defined(CONFIG_NET_IPV6)
if (ctx->app_type == NET_APP_SERVER) {
if (ctx->ipv6.ctx && ctx->ipv6.ctx->local.family == AF_INET6) {
get_addresses(ctx->ipv6.ctx,
addr_local, sizeof(addr_local),
addr_remote, sizeof(addr_remote));
PR(" Listen IPv6: %16s <- %16s\n",
addr_local, addr_remote);
} else {
PR(" Not listening IPv6 connections.\n");
}
} else if (ctx->app_type == NET_APP_CLIENT) {
if (ctx->ipv6.ctx && ctx->ipv6.ctx->local.family == AF_INET6) {
get_addresses(ctx->ipv6.ctx,
addr_local, sizeof(addr_local),
addr_remote, sizeof(addr_remote));
PR(" Connect IPv6: %16s -> %16s\n",
addr_local, addr_remote);
}
} else {
PR("Invalid application type %d\n", ctx->app_type);
printed = true;
}
#else
PR(" IPv6 connections not enabled.\n");
#endif
#if defined(CONFIG_NET_IPV4)
if (ctx->app_type == NET_APP_SERVER) {
if (ctx->ipv4.ctx && ctx->ipv4.ctx->local.family == AF_INET) {
get_addresses(ctx->ipv4.ctx,
addr_local, sizeof(addr_local),
addr_remote, sizeof(addr_remote));
PR(" Listen IPv4: %16s <- %16s\n", addr_local,
addr_remote);
} else {
PR(" Not listening IPv4 connections.\n");
}
} else if (ctx->app_type == NET_APP_CLIENT) {
if (ctx->ipv4.ctx && ctx->ipv4.ctx->local.family == AF_INET) {
get_addresses(ctx->ipv4.ctx,
addr_local, sizeof(addr_local),
addr_remote, sizeof(addr_remote));
PR(" Connect IPv4: %16s -> %16s\n", addr_local,
addr_remote);
}
} else {
if (!printed) {
PR("Invalid application type %d\n", ctx->app_type);
}
}
#else
PR(" IPv4 connections not enabled.\n");
#endif
#if defined(CONFIG_NET_APP_SERVER)
#if defined(CONFIG_NET_TCP)
{
int i, found = 0;
for (i = 0; i < CONFIG_NET_APP_SERVER_NUM_CONN; i++) {
if (!ctx->server.net_ctxs[i] ||
!net_context_is_used(ctx->server.net_ctxs[i])) {
continue;
}
get_addresses(ctx->server.net_ctxs[i],
addr_local, sizeof(addr_local),
addr_remote, sizeof(addr_remote));
PR(" Active: %16s <- %16s\n", addr_local,
addr_remote);
found++;
}
if (!found) {
PR(" No active connections to this server.\n");
}
}
#else
PR(" TCP not enabled for this server.\n");
#endif
#endif /* CONFIG_NET_APP_SERVER */
(*count)++;
return;
}
#endif
static int cmd_net_app(const struct shell *shell, size_t argc, char *argv[])
{
#if CONFIG_NET_APP_LOG_LEVEL >= LOG_LEVEL_DBG
struct net_shell_user_data user_data;
int i = 0;
#endif
ARG_UNUSED(argc);
ARG_UNUSED(argv);
#if CONFIG_NET_APP_LOG_LEVEL >= LOG_LEVEL_DBG
if (IS_ENABLED(CONFIG_NET_APP_SERVER)) {
user_data.shell = shell;
user_data.user_data = &i;
net_app_server_foreach(net_app_cb, &user_data);
if (i == 0) {
PR_WARNING("No net app server instances found.\n");
i = -1;
}
}
if (IS_ENABLED(CONFIG_NET_APP_CLIENT)) {
if (i) {
PR("\n");
i = 0;
}
user_data.shell = shell;
user_data.user_data = &i;
net_app_client_foreach(net_app_cb, &user_data);
if (i == 0) {
PR_WARNING("No net app client instances found.\n");
}
}
#else
PR_INFO("Enable CONFIG_NET_APP_LOG_LEVEL_DBG and either "
"CONFIG_NET_APP_CLIENT or CONFIG_NET_APP_SERVER to see "
"client/server instance information.\n");
#endif
return 0;
}
#if defined(CONFIG_NET_ARP)
static void arp_cb(struct arp_entry *entry, void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
int *count = data->user_data;
if (*count == 0) {
PR(" Interface Link Address\n");
}
PR("[%2d] %p %s %s\n", *count, entry->iface,
net_sprint_ll_addr(entry->eth.addr, sizeof(struct net_eth_addr)),
net_sprint_ipv4_addr(&entry->ip));
(*count)++;
}
#endif /* CONFIG_NET_ARP */
#if !defined(CONFIG_NET_ARP)
static void print_arp_error(const struct shell *shell)
{
PR_INFO("Enable CONFIG_NET_ARP, CONFIG_NET_IPV4 and "
"CONFIG_NET_L2_ETHERNET to see ARP information.\n");
}
#endif
static int cmd_net_arp(const struct shell *shell, size_t argc, char *argv[])
{
#if defined(CONFIG_NET_ARP)
struct net_shell_user_data user_data;
int arg = 1;
#endif
ARG_UNUSED(argc);
#if defined(CONFIG_NET_ARP)
if (!argv[arg]) {
/* ARP cache content */
int count = 0;
user_data.shell = shell;
user_data.user_data = &count;
if (net_arp_foreach(arp_cb, &user_data) == 0) {
PR("ARP cache is empty.\n");
}
}
#else
print_arp_error(shell);
#endif
return 0;
}
static int cmd_net_arp_flush(const struct shell *shell, size_t argc,
char *argv[])
{
ARG_UNUSED(argc);
ARG_UNUSED(argv);
#if defined(CONFIG_NET_ARP)
PR("Flushing ARP cache.\n");
net_arp_clear_cache(NULL);
#else
print_arp_error(shell);
#endif
return 0;
}
static int cmd_net_conn(const struct shell *shell, size_t argc, char *argv[])
{
struct net_shell_user_data user_data;
int count = 0;
ARG_UNUSED(argc);
ARG_UNUSED(argv);
PR(" Context \tIface Flags Local \tRemote\n");
user_data.shell = shell;
user_data.user_data = &count;
net_context_foreach(context_cb, &user_data);
if (count == 0) {
PR("No connections\n");
}
#if CONFIG_NET_CONN_LOG_LEVEL >= LOG_LEVEL_DBG
PR("\n Handler Callback \tProto\tLocal \tRemote\n");
count = 0;
net_conn_foreach(conn_handler_cb, &user_data);
if (count == 0) {
PR("No connection handlers found.\n");
}
#endif
#if defined(CONFIG_NET_TCP)
PR("\nTCP Context Src port Dst port "
"Send-Seq Send-Ack MSS State\n");
count = 0;
net_tcp_foreach(tcp_cb, &user_data);
if (count == 0) {
PR("No TCP connections\n");
} else {
#if CONFIG_NET_TCP_LOG_LEVEL >= LOG_LEVEL_DBG
/* Print information about pending packets */
count = 0;
net_tcp_foreach(tcp_sent_list_cb, &user_data);
#endif /* CONFIG_NET_TCP_LOG_LEVEL >= LOG_LEVEL_DBG */
}
#if CONFIG_NET_TCP_LOG_LEVEL < LOG_LEVEL_DBG
PR_INFO("\nEnable CONFIG_NET_TCP_LOG_LEVEL_DBG=y for additional info\n");
#endif /* CONFIG_NET_TCP_LOG_LEVEL < LOG_LEVEL_DBG */
#endif
#if defined(CONFIG_NET_IPV6_FRAGMENT)
count = 0;
net_ipv6_frag_foreach(ipv6_frag_cb, &user_data);
/* Do not print anything if no fragments are pending atm */
#endif
return 0;
}
#if defined(CONFIG_DNS_RESOLVER)
static void dns_result_cb(enum dns_resolve_status status,
struct dns_addrinfo *info,
void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
bool *first = data->user_data;
if (status == DNS_EAI_CANCELED) {
PR_WARNING("\nTimeout while resolving name.\n");
*first = false;
return;
}
if (status == DNS_EAI_INPROGRESS && info) {
char addr[NET_IPV6_ADDR_LEN];
if (*first) {
PR("\n");
*first = false;
}
if (info->ai_family == AF_INET) {
net_addr_ntop(AF_INET,
&net_sin(&info->ai_addr)->sin_addr,
addr, NET_IPV4_ADDR_LEN);
} else if (info->ai_family == AF_INET6) {
net_addr_ntop(AF_INET6,
&net_sin6(&info->ai_addr)->sin6_addr,
addr, NET_IPV6_ADDR_LEN);
} else {
strncpy(addr, "Invalid protocol family",
sizeof(addr));
}
PR("\t%s\n", addr);
return;
}
if (status == DNS_EAI_ALLDONE) {
PR("All results received\n");
*first = false;
return;
}
if (status == DNS_EAI_FAIL) {
PR_WARNING("No such name found.\n");
*first = false;
return;
}
PR_WARNING("Unhandled status %d received\n", status);
}
static void print_dns_info(const struct shell *shell,
struct dns_resolve_context *ctx)
{
int i;
PR("DNS servers:\n");
for (i = 0; i < CONFIG_DNS_RESOLVER_MAX_SERVERS +
DNS_MAX_MCAST_SERVERS; i++) {
if (ctx->servers[i].dns_server.sa_family == AF_INET) {
PR("\t%s:%u\n",
net_sprint_ipv4_addr(
&net_sin(&ctx->servers[i].dns_server)->
sin_addr),
ntohs(net_sin(
&ctx->servers[i].dns_server)->sin_port));
} else if (ctx->servers[i].dns_server.sa_family == AF_INET6) {
PR("\t[%s]:%u\n",
net_sprint_ipv6_addr(
&net_sin6(&ctx->servers[i].dns_server)->
sin6_addr),
ntohs(net_sin6(
&ctx->servers[i].dns_server)->sin6_port));
}
}
PR("Pending queries:\n");
for (i = 0; i < CONFIG_DNS_NUM_CONCUR_QUERIES; i++) {
s32_t remaining;
if (!ctx->queries[i].cb) {
continue;
}
remaining =
k_delayed_work_remaining_get(&ctx->queries[i].timer);
if (ctx->queries[i].query_type == DNS_QUERY_TYPE_A) {
PR("\tIPv4[%u]: %s remaining %d\n",
ctx->queries[i].id,
ctx->queries[i].query,
remaining);
} else if (ctx->queries[i].query_type == DNS_QUERY_TYPE_AAAA) {
PR("\tIPv6[%u]: %s remaining %d\n",
ctx->queries[i].id,
ctx->queries[i].query,
remaining);
}
}
}
#endif
static int cmd_net_dns_cancel(const struct shell *shell, size_t argc,
char *argv[])
{
#if defined(CONFIG_DNS_RESOLVER)
struct dns_resolve_context *ctx;
int ret, i;
#endif
ARG_UNUSED(argc);
ARG_UNUSED(argv);
#if defined(CONFIG_DNS_RESOLVER)
ctx = dns_resolve_get_default();
if (!ctx) {
PR_WARNING("No default DNS context found.\n");
return -ENOEXEC;
}
for (ret = 0, i = 0; i < CONFIG_DNS_NUM_CONCUR_QUERIES; i++) {
if (!ctx->queries[i].cb) {
continue;
}
if (!dns_resolve_cancel(ctx, ctx->queries[i].id)) {
ret++;
}
}
if (ret) {
PR("Cancelled %d pending requests.\n", ret);
} else {
PR("No pending DNS requests.\n");
}
#else
PR_INFO("DNS resolver not supported. Set CONFIG_DNS_RESOLVER to "
"enable it.\n");
#endif
return 0;
}
static int cmd_net_dns_query(const struct shell *shell, size_t argc,
char *argv[])
{
#if defined(CONFIG_DNS_RESOLVER)
#define DNS_TIMEOUT K_MSEC(2000) /* ms */
struct net_shell_user_data user_data;
enum dns_query_type qtype = DNS_QUERY_TYPE_A;
char *host, *type = NULL;
bool first = true;
int ret, arg = 1;
host = argv[arg++];
if (!host) {
PR_WARNING("Hostname not specified.\n");
return -ENOEXEC;
}
if (argv[arg]) {
type = argv[arg];
}
if (type) {
if (strcmp(type, "A") == 0) {
qtype = DNS_QUERY_TYPE_A;
PR("IPv4 address type\n");
} else if (strcmp(type, "AAAA") == 0) {
qtype = DNS_QUERY_TYPE_AAAA;
PR("IPv6 address type\n");
} else {
PR_WARNING("Unknown query type, specify either "
"A or AAAA\n");
return -ENOEXEC;
}
}
user_data.shell = shell;
user_data.user_data = &first;
ret = dns_get_addr_info(host, qtype, NULL, dns_result_cb, &user_data,
DNS_TIMEOUT);
if (ret < 0) {
PR_WARNING("Cannot resolve '%s' (%d)\n", host, ret);
} else {
PR("Query for '%s' sent.\n", host);
}
#else
PR_INFO("DNS resolver not supported. Set CONFIG_DNS_RESOLVER to "
"enable it.\n");
#endif
return 0;
}
static int cmd_net_dns(const struct shell *shell, size_t argc, char *argv[])
{
#if defined(CONFIG_DNS_RESOLVER)
struct dns_resolve_context *ctx;
#endif
#if defined(CONFIG_DNS_RESOLVER)
if (argv[1]) {
/* So this is a query then */
cmd_net_dns_query(shell, argc, argv);
return 0;
}
/* DNS status */
ctx = dns_resolve_get_default();
if (!ctx) {
PR_WARNING("No default DNS context found.\n");
return -ENOEXEC;
}
print_dns_info(shell, ctx);
#else
PR_INFO("DNS resolver not supported. Set CONFIG_DNS_RESOLVER to "
"enable it.\n");
#endif
return 0;
}
#if defined(CONFIG_NET_GPTP)
static void gptp_port_cb(int port, struct net_if *iface, void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
int *count = data->user_data;
if (*count == 0) {
PR("Port Interface\n");
}
(*count)++;
PR("%2d %p\n", port, iface);
}
static const char *pdelay_req2str(enum gptp_pdelay_req_states state)
{
switch (state) {
case GPTP_PDELAY_REQ_NOT_ENABLED:
return "REQ_NOT_ENABLED";
case GPTP_PDELAY_REQ_INITIAL_SEND_REQ:
return "INITIAL_SEND_REQ";
case GPTP_PDELAY_REQ_RESET:
return "REQ_RESET";
case GPTP_PDELAY_REQ_SEND_REQ:
return "SEND_REQ";
case GPTP_PDELAY_REQ_WAIT_RESP:
return "WAIT_RESP";
case GPTP_PDELAY_REQ_WAIT_FOLLOW_UP:
return "WAIT_FOLLOW_UP";
case GPTP_PDELAY_REQ_WAIT_ITV_TIMER:
return "WAIT_ITV_TIMER";
}
return "<unknown>";
};
static const char *pdelay_resp2str(enum gptp_pdelay_resp_states state)
{
switch (state) {
case GPTP_PDELAY_RESP_NOT_ENABLED:
return "RESP_NOT_ENABLED";
case GPTP_PDELAY_RESP_INITIAL_WAIT_REQ:
return "INITIAL_WAIT_REQ";
case GPTP_PDELAY_RESP_WAIT_REQ:
return "WAIT_REQ";
case GPTP_PDELAY_RESP_WAIT_TSTAMP:
return "WAIT_TSTAMP";
}
return "<unknown>";
}
static const char *sync_rcv2str(enum gptp_sync_rcv_states state)
{
switch (state) {
case GPTP_SYNC_RCV_DISCARD:
return "DISCARD";
case GPTP_SYNC_RCV_WAIT_SYNC:
return "WAIT_SYNC";
case GPTP_SYNC_RCV_WAIT_FOLLOW_UP:
return "WAIT_FOLLOW_UP";
}
return "<unknown>";
}
static const char *sync_send2str(enum gptp_sync_send_states state)
{
switch (state) {
case GPTP_SYNC_SEND_INITIALIZING:
return "INITIALIZING";
case GPTP_SYNC_SEND_SEND_SYNC:
return "SEND_SYNC";
case GPTP_SYNC_SEND_SEND_FUP:
return "SEND_FUP";
}
return "<unknown>";
}
static const char *pss_rcv2str(enum gptp_pss_rcv_states state)
{
switch (state) {
case GPTP_PSS_RCV_DISCARD:
return "DISCARD";
case GPTP_PSS_RCV_RECEIVED_SYNC:
return "RECEIVED_SYNC";
}
return "<unknown>";
}
static const char *pss_send2str(enum gptp_pss_send_states state)
{
switch (state) {
case GPTP_PSS_SEND_TRANSMIT_INIT:
return "TRANSMIT_INIT";
case GPTP_PSS_SEND_SYNC_RECEIPT_TIMEOUT:
return "SYNC_RECEIPT_TIMEOUT";
case GPTP_PSS_SEND_SEND_MD_SYNC:
return "SEND_MD_SYNC";
case GPTP_PSS_SEND_SET_SYNC_RECEIPT_TIMEOUT:
return "SET_SYNC_RECEIPT_TIMEOUT";
}
return "<unknown>";
}
static const char *pa_rcv2str(enum gptp_pa_rcv_states state)
{
switch (state) {
case GPTP_PA_RCV_DISCARD:
return "DISCARD";
case GPTP_PA_RCV_RECEIVE:
return "RECEIVE";
}
return "<unknown>";
};
static const char *pa_info2str(enum gptp_pa_info_states state)
{
switch (state) {
case GPTP_PA_INFO_DISABLED:
return "DISABLED";
case GPTP_PA_INFO_POST_DISABLED:
return "POST_DISABLED";
case GPTP_PA_INFO_AGED:
return "AGED";
case GPTP_PA_INFO_UPDATE:
return "UPDATE";
case GPTP_PA_INFO_CURRENT:
return "CURRENT";
case GPTP_PA_INFO_RECEIVE:
return "RECEIVE";
case GPTP_PA_INFO_SUPERIOR_MASTER_PORT:
return "SUPERIOR_MASTER_PORT";
case GPTP_PA_INFO_REPEATED_MASTER_PORT:
return "REPEATED_MASTER_PORT";
case GPTP_PA_INFO_INFERIOR_MASTER_OR_OTHER_PORT:
return "INFERIOR_MASTER_OR_OTHER_PORT";
}
return "<unknown>";
};
static const char *pa_transmit2str(enum gptp_pa_transmit_states state)
{
switch (state) {
case GPTP_PA_TRANSMIT_INIT:
return "INIT";
case GPTP_PA_TRANSMIT_PERIODIC:
return "PERIODIC";
case GPTP_PA_TRANSMIT_IDLE:
return "IDLE";
case GPTP_PA_TRANSMIT_POST_IDLE:
return "POST_IDLE";
}
return "<unknown>";
};
static const char *site_sync2str(enum gptp_site_sync_sync_states state)
{
switch (state) {
case GPTP_SSS_INITIALIZING:
return "INITIALIZING";
case GPTP_SSS_RECEIVING_SYNC:
return "RECEIVING_SYNC";
}
return "<unknown>";
}
static const char *clk_slave2str(enum gptp_clk_slave_sync_states state)
{
switch (state) {
case GPTP_CLK_SLAVE_SYNC_INITIALIZING:
return "INITIALIZING";
case GPTP_CLK_SLAVE_SYNC_SEND_SYNC_IND:
return "SEND_SYNC_IND";
}
return "<unknown>";
};
static const char *pr_selection2str(enum gptp_pr_selection_states state)
{
switch (state) {
case GPTP_PR_SELECTION_INIT_BRIDGE:
return "INIT_BRIDGE";
case GPTP_PR_SELECTION_ROLE_SELECTION:
return "ROLE_SELECTION";
}
return "<unknown>";
};
static const char *cms_rcv2str(enum gptp_cms_rcv_states state)
{
switch (state) {
case GPTP_CMS_RCV_INITIALIZING:
return "INITIALIZING";
case GPTP_CMS_RCV_WAITING:
return "WAITING";
case GPTP_CMS_RCV_SOURCE_TIME:
return "SOURCE_TIME";
}
return "<unknown>";
};
#if !defined(USCALED_NS_TO_NS)
#define USCALED_NS_TO_NS(val) (val >> 16)
#endif
static const char *selected_role_str(int port)
{
switch (GPTP_GLOBAL_DS()->selected_role[port]) {
case GPTP_PORT_INITIALIZING:
return "INITIALIZING";
case GPTP_PORT_FAULTY:
return "FAULTY";
case GPTP_PORT_DISABLED:
return "DISABLED";
case GPTP_PORT_LISTENING:
return "LISTENING";
case GPTP_PORT_PRE_MASTER:
return "PRE-MASTER";
case GPTP_PORT_MASTER:
return "MASTER";
case GPTP_PORT_PASSIVE:
return "PASSIVE";
case GPTP_PORT_UNCALIBRATED:
return "UNCALIBRATED";
case GPTP_PORT_SLAVE:
return "SLAVE";
}
return "<unknown>";
}
static void gptp_print_port_info(const struct shell *shell, int port)
{
struct gptp_port_bmca_data *port_bmca_data;
struct gptp_port_param_ds *port_param_ds;
struct gptp_port_states *port_state;
struct gptp_port_ds *port_ds;
struct net_if *iface;
int ret, i;
ret = gptp_get_port_data(gptp_get_domain(),
port,
&port_ds,
&port_param_ds,
&port_state,
&port_bmca_data,
&iface);
if (ret < 0) {
PR_WARNING("Cannot get gPTP information for port %d (%d)\n",
port, ret);
return;
}
PR("Port id : %d\n", port_ds->port_id.port_number);
PR("Clock id : ");
for (i = 0; i < sizeof(port_ds->port_id.clk_id); i++) {
PR("%02x", port_ds->port_id.clk_id[i]);
if (i != (sizeof(port_ds->port_id.clk_id) - 1)) {
PR(":");
}
}
PR("\n");
PR("Version : %d\n", port_ds->version);
PR("AS capable : %s\n", port_ds->as_capable ? "yes" : "no");
PR("\nConfiguration:\n");
PR("Time synchronization and Best Master Selection enabled "
": %s\n", port_ds->ptt_port_enabled ? "yes" : "no");
PR("The port is measuring the path delay "
": %s\n", port_ds->is_measuring_delay ? "yes" : "no");
PR("One way propagation time on %s : %u ns\n",
"the link attached to this port",
(u32_t)port_ds->neighbor_prop_delay);
PR("Propagation time threshold for %s : %u ns\n",
"the link attached to this port",
(u32_t)port_ds->neighbor_prop_delay_thresh);
PR("Estimate of the ratio of the frequency with the peer "
": %u\n", (u32_t)port_ds->neighbor_rate_ratio);
PR("Asymmetry on the link relative to the grand master time base "
": %lld\n", port_ds->delay_asymmetry);
PR("Maximum interval between sync %s "
": %llu\n", "messages",
port_ds->sync_receipt_timeout_time_itv);
PR("Maximum number of Path Delay Requests without a response "
": %d\n", port_ds->allowed_lost_responses);
PR("Current Sync %s : %d\n",
"sequence id for this port", port_ds->sync_seq_id);
PR("Current Path Delay Request %s : %d\n",
"sequence id for this port", port_ds->pdelay_req_seq_id);
PR("Current Announce %s : %d\n",
"sequence id for this port", port_ds->announce_seq_id);
PR("Current Signaling %s : %d\n",
"sequence id for this port", port_ds->signaling_seq_id);
PR("Whether neighborRateRatio %s : %s\n",
"needs to be computed for this port",
port_ds->compute_neighbor_rate_ratio ? "yes" : "no");
PR("Whether neighborPropDelay %s : %s\n",
"needs to be computed for this port",
port_ds->compute_neighbor_prop_delay ? "yes" : "no");
PR("Initial Announce Interval %s : %d\n",
"as a Logarithm to base 2", port_ds->ini_log_announce_itv);
PR("Current Announce Interval %s : %d\n",
"as a Logarithm to base 2", port_ds->cur_log_announce_itv);
PR("Initial Sync Interval %s : %d\n",
"as a Logarithm to base 2", port_ds->ini_log_half_sync_itv);
PR("Current Sync Interval %s : %d\n",
"as a Logarithm to base 2", port_ds->cur_log_half_sync_itv);
PR("Initial Path Delay Request Interval %s : %d\n",
"as a Logarithm to base 2", port_ds->ini_log_pdelay_req_itv);
PR("Current Path Delay Request Interval %s : %d\n",
"as a Logarithm to base 2", port_ds->cur_log_pdelay_req_itv);
PR("Time without receiving announce %s %s : %d ms (%d)\n",
"messages", "before running BMCA",
gptp_uscaled_ns_to_timer_ms(
&port_bmca_data->ann_rcpt_timeout_time_interval),
port_ds->announce_receipt_timeout);
PR("Time without receiving sync %s %s : %llu ms (%d)\n",
"messages", "before running BMCA",
(port_ds->sync_receipt_timeout_time_itv >> 16) /
(NSEC_PER_SEC / MSEC_PER_SEC),
port_ds->sync_receipt_timeout);
PR("Sync event %s : %llu ms\n",
"transmission interval for the port",
USCALED_NS_TO_NS(port_ds->half_sync_itv.low) /
(NSEC_PER_USEC * USEC_PER_MSEC));
PR("Path Delay Request %s : %llu ms\n",
"transmission interval for the port",
USCALED_NS_TO_NS(port_ds->pdelay_req_itv.low) /
(NSEC_PER_USEC * USEC_PER_MSEC));
PR("\nRuntime status:\n");
PR("Current global port state "
" : %s\n", selected_role_str(port));
PR("Path Delay Request state machine variables:\n");
PR("\tCurrent state "
": %s\n", pdelay_req2str(port_state->pdelay_req.state));
PR("\tInitial Path Delay Response Peer Timestamp "
": %llu\n", port_state->pdelay_req.ini_resp_evt_tstamp);
PR("\tInitial Path Delay Response Ingress Timestamp "
": %llu\n", port_state->pdelay_req.ini_resp_ingress_tstamp);
PR("\tPath Delay Response %s %s : %u\n",
"messages", "received",
port_state->pdelay_req.rcvd_pdelay_resp);
PR("\tPath Delay Follow Up %s %s : %u\n",
"messages", "received",
port_state->pdelay_req.rcvd_pdelay_follow_up);
PR("\tNumber of lost Path Delay Responses "
": %u\n", port_state->pdelay_req.lost_responses);
PR("\tTimer expired send a new Path Delay Request "
": %u\n", port_state->pdelay_req.pdelay_timer_expired);
PR("\tNeighborRateRatio has been computed successfully "
": %u\n", port_state->pdelay_req.neighbor_rate_ratio_valid);
PR("\tPath Delay has already been computed after init "
": %u\n", port_state->pdelay_req.init_pdelay_compute);
PR("\tCount consecutive reqs with multiple responses "
": %u\n", port_state->pdelay_req.multiple_resp_count);
PR("Path Delay Response state machine variables:\n");
PR("\tCurrent state "
": %s\n", pdelay_resp2str(port_state->pdelay_resp.state));
PR("SyncReceive state machine variables:\n");
PR("\tCurrent state "
": %s\n", sync_rcv2str(port_state->sync_rcv.state));
PR("\tA Sync %s %s : %s\n",
"Message", "has been received",
port_state->sync_rcv.rcvd_sync ? "yes" : "no");
PR("\tA Follow Up %s %s : %s\n",
"Message", "has been received",
port_state->sync_rcv.rcvd_follow_up ? "yes" : "no");
PR("\tA Follow Up %s %s : %s\n",
"Message", "timeout",
port_state->sync_rcv.follow_up_timeout_expired ? "yes" : "no");
PR("\tTime at which a Sync %s without Follow Up\n"
"\t will be discarded "
": %llu\n", "Message",
port_state->sync_rcv.follow_up_receipt_timeout);
PR("SyncSend state machine variables:\n");
PR("\tCurrent state "
": %s\n", sync_send2str(port_state->sync_send.state));
PR("\tA MDSyncSend structure %s : %s\n",
"has been received",
port_state->sync_send.rcvd_md_sync ? "yes" : "no");
PR("\tThe timestamp for the sync msg %s : %s\n",
"has been received",
port_state->sync_send.md_sync_timestamp_avail ? "yes" : "no");
PR("PortSyncSyncReceive state machine variables:\n");
PR("\tCurrent state "
": %s\n", pss_rcv2str(port_state->pss_rcv.state));
PR("\tGrand Master / Local Clock frequency ratio "
": %f\n", port_state->pss_rcv.rate_ratio);
PR("\tA MDSyncReceive struct is ready to be processed "
": %s\n", port_state->pss_rcv.rcvd_md_sync ? "yes" : "no");
PR("\tExpiry of SyncReceiptTimeoutTimer : %s\n",
port_state->pss_rcv.rcv_sync_receipt_timeout_timer_expired ?
"yes" : "no");
PR("PortSyncSyncSend state machine variables:\n");
PR("\tCurrent state "
": %s\n", pss_send2str(port_state->pss_send.state));
PR("\tFollow Up Correction Field of last recv PSS "
": %lld\n",
port_state->pss_send.last_follow_up_correction_field);
PR("\tUpstream Tx Time of the last recv PortSyncSync "
": %llu\n", port_state->pss_send.last_upstream_tx_time);
PR("\tRate Ratio of the last received PortSyncSync "
": %f\n",
port_state->pss_send.last_rate_ratio);
PR("\tGM Freq Change of the last received PortSyncSync "
": %f\n", port_state->pss_send.last_gm_freq_change);
PR("\tGM Time Base Indicator of last recv PortSyncSync "
": %d\n", port_state->pss_send.last_gm_time_base_indicator);
PR("\tReceived Port Number of last recv PortSyncSync "
": %d\n",
port_state->pss_send.last_rcvd_port_num);
PR("\tPortSyncSync structure is ready to be processed "
": %s\n", port_state->pss_send.rcvd_pss_sync ? "yes" : "no");
PR("\tFlag when the %s has expired : %s\n",
"half_sync_itv_timer",
port_state->pss_send.half_sync_itv_timer_expired ? "yes" : "no");
PR("\tHas %s expired twice : %s\n",
"half_sync_itv_timer",
port_state->pss_send.sync_itv_timer_expired ? "yes" : "no");
PR("\tHas syncReceiptTimeoutTime expired "
": %s\n",
port_state->pss_send.send_sync_receipt_timeout_timer_expired ?
"yes" : "no");
PR("PortAnnounceReceive state machine variables:\n");
PR("\tCurrent state "
": %s\n", pa_rcv2str(port_state->pa_rcv.state));
PR("\tAn announce message is ready to be processed "
": %s\n",
port_state->pa_rcv.rcvd_announce ? "yes" : "no");
PR("PortAnnounceInformation state machine variables:\n");
PR("\tCurrent state "
": %s\n", pa_info2str(port_state->pa_info.state));
PR("\tExpired announce information "
": %s\n", port_state->pa_info.ann_expired ? "yes" : "no");
PR("PortAnnounceTransmit state machine variables:\n");
PR("\tCurrent state "
": %s\n", pa_transmit2str(port_state->pa_transmit.state));
PR("\tTrigger announce information "
": %s\n", port_state->pa_transmit.ann_trigger ? "yes" : "no");
#if defined(CONFIG_NET_GPTP_STATISTICS)
PR("\nStatistics:\n");
PR("Sync %s %s : %u\n",
"messages", "received", port_param_ds->rx_sync_count);
PR("Follow Up %s %s : %u\n",
"messages", "received", port_param_ds->rx_fup_count);
PR("Path Delay Request %s %s : %u\n",
"messages", "received", port_param_ds->rx_pdelay_req_count);
PR("Path Delay Response %s %s : %u\n",
"messages", "received", port_param_ds->rx_pdelay_resp_count);
PR("Path Delay %s threshold %s : %u\n",
"messages", "exceeded",
port_param_ds->neighbor_prop_delay_exceeded);
PR("Path Delay Follow Up %s %s : %u\n",
"messages", "received", port_param_ds->rx_pdelay_resp_fup_count);
PR("Announce %s %s : %u\n",
"messages", "received", port_param_ds->rx_announce_count);
PR("ptp %s discarded : %u\n",
"messages", port_param_ds->rx_ptp_packet_discard_count);
PR("Sync %s %s : %u\n",
"reception", "timeout",
port_param_ds->sync_receipt_timeout_count);
PR("Announce %s %s : %u\n",
"reception", "timeout",
port_param_ds->announce_receipt_timeout_count);
PR("Path Delay Requests without a response "
": %u\n",
port_param_ds->pdelay_allowed_lost_resp_exceed_count);
PR("Sync %s %s : %u\n",
"messages", "sent", port_param_ds->tx_sync_count);
PR("Follow Up %s %s : %u\n",
"messages", "sent", port_param_ds->tx_fup_count);
PR("Path Delay Request %s %s : %u\n",
"messages", "sent", port_param_ds->tx_pdelay_req_count);
PR("Path Delay Response %s %s : %u\n",
"messages", "sent", port_param_ds->tx_pdelay_resp_count);
PR("Path Delay Response FUP %s %s : %u\n",
"messages", "sent", port_param_ds->tx_pdelay_resp_fup_count);
PR("Announce %s %s : %u\n",
"messages", "sent", port_param_ds->tx_announce_count);
#endif /* CONFIG_NET_GPTP_STATISTICS */
}
#endif /* CONFIG_NET_GPTP */
static int cmd_net_gptp_port(const struct shell *shell, size_t argc,
char *argv[])
{
#if defined(CONFIG_NET_GPTP)
int arg = 1;
char *endptr;
int port;
#endif
#if defined(CONFIG_NET_GPTP)
if (!argv[arg]) {
PR_WARNING("Port number must be given.\n");
return -ENOEXEC;
}
port = strtol(argv[arg], &endptr, 10);
if (*endptr == '\0') {
gptp_print_port_info(shell, port);
} else {
PR_WARNING("Not a valid gPTP port number: %s\n", argv[arg]);
}
#else
ARG_UNUSED(argc);
ARG_UNUSED(argv);
PR_INFO("gPTP not supported, set CONFIG_NET_GPTP to enable it.\n");
#endif
return 0;
}
static int cmd_net_gptp(const struct shell *shell, size_t argc, char *argv[])
{
#if defined(CONFIG_NET_GPTP)
/* gPTP status */
struct gptp_domain *domain = gptp_get_domain();
int count = 0;
int arg = 1;
#endif
#if defined(CONFIG_NET_GPTP)
if (argv[arg]) {
cmd_net_gptp_port(shell, argc, argv);
} else {
struct net_shell_user_data user_data;
user_data.shell = shell;
user_data.user_data = &count;
gptp_foreach_port(gptp_port_cb, &user_data);
PR("\n");
PR("SiteSyncSync state machine variables:\n");
PR("\tCurrent state : %s\n",
site_sync2str(domain->state.site_ss.state));
PR("\tA PortSyncSync struct is ready : %s\n",
domain->state.site_ss.rcvd_pss ? "yes" : "no");
PR("ClockSlaveSync state machine variables:\n");
PR("\tCurrent state : %s\n",
clk_slave2str(domain->state.clk_slave_sync.state));
PR("\tA PortSyncSync struct is ready : %s\n",
domain->state.clk_slave_sync.rcvd_pss ? "yes" : "no");
PR("\tThe local clock has expired : %s\n",
domain->state.clk_slave_sync.rcvd_local_clk_tick ?
"yes" : "no");
PR("PortRoleSelection state machine variables:\n");
PR("\tCurrent state : %s\n",
pr_selection2str(domain->state.pr_sel.state));
PR("ClockMasterSyncReceive state machine variables:\n");
PR("\tCurrent state : %s\n",
cms_rcv2str(domain->state.clk_master_sync_receive.state));
PR("\tA ClockSourceTime : %s\n",
domain->state.clk_master_sync_receive.rcvd_clock_source_req
? "yes" : "no");
PR("\tThe local clock has expired : %s\n",
domain->state.clk_master_sync_receive.rcvd_local_clock_tick
? "yes" : "no");
}
#else
ARG_UNUSED(argc);
ARG_UNUSED(argv);
PR_INFO("gPTP not supported, set CONFIG_NET_GPTP to enable it.\n");
#endif
return 0;
}
#if defined(CONFIG_NET_DEBUG_HTTP_CONN) && defined(CONFIG_HTTP_SERVER)
#define MAX_HTTP_OUTPUT_LEN 64
static char *http_str_output(char *output, int outlen, const char *str, int len)
{
if (len > outlen) {
len = outlen;
}
if (len == 0) {
(void)memset(output, 0, outlen);
} else {
memcpy(output, str, len);
output[len] = '\0';
}
return output;
}
static void http_server_cb(struct http_ctx *entry, void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
int *count = data->user_data;
static char output[MAX_HTTP_OUTPUT_LEN];
int i;
/* +7 for []:port */
char addr_local[ADDR_LEN + 7];
char addr_remote[ADDR_LEN + 7] = "";
if (*count == 0) {
PR(" HTTP ctx Local \t"
"Remote \tURL\n");
}
(*count)++;
for (i = 0; i < CONFIG_NET_APP_SERVER_NUM_CONN; i++) {
if (!entry->app_ctx.server.net_ctxs[i] ||
!net_context_is_used(entry->app_ctx.server.net_ctxs[i])) {
continue;
}
get_addresses(entry->app_ctx.server.net_ctxs[i],
addr_local, sizeof(addr_local),
addr_remote, sizeof(addr_remote));
PR("[%2d] %c%c %p %16s\t%16s\t%s\n",
*count,
entry->app_ctx.is_enabled ? 'E' : 'D',
entry->is_tls ? 'S' : ' ',
entry, addr_local, addr_remote,
http_str_output(output, sizeof(output) - 1,
entry->http.url, entry->http.url_len));
}
}
#endif /* CONFIG_NET_DEBUG_HTTP_CONN && CONFIG_HTTP_SERVER */
#if defined(CONFIG_NET_DEBUG_HTTP_CONN) && defined(CONFIG_HTTP_SERVER)
static int http_monitor_count;
#endif
static int cmd_net_http_monitor(const struct shell *shell, size_t argc,
char *argv[])
{
#if defined(CONFIG_NET_DEBUG_HTTP_CONN) && defined(CONFIG_HTTP_SERVER)
PR_INFO("Activating HTTP monitor. Type \"net http\" "
"to disable HTTP connection monitoring.\n");
http_server_conn_monitor(http_server_cb, &count);
#else
ARG_UNUSED(argc);
ARG_UNUSED(argv);
PR_INFO("Enable CONFIG_NET_DEBUG_HTTP_CONN and CONFIG_HTTP_SERVER "
"to get HTTP server connection information\n");
#endif
return 0;
}
static int cmd_net_http(const struct shell *shell, size_t argc, char *argv[])
{
#if defined(CONFIG_NET_DEBUG_HTTP_CONN) && defined(CONFIG_HTTP_SERVER)
struct net_shell_user_data user_data;
int arg = 2;
#endif
#if defined(CONFIG_NET_DEBUG_HTTP_CONN) && defined(CONFIG_HTTP_SERVER)
http_monitor_count = 0;
/* Turn off monitoring if it was enabled */
http_server_conn_monitor(NULL, NULL);
user_data.shell = shell;
user_data.user_data = &http_monitor_count;
http_server_conn_foreach(http_server_cb, &user_data);
#else
ARG_UNUSED(argc);
ARG_UNUSED(argv);
PR_INFO("Enable CONFIG_NET_DEBUG_HTTP_CONN and CONFIG_HTTP_SERVER "
"to get HTTP server connection information\n");
#endif
return 0;
}
static int get_iface_idx(const struct shell *shell, char *index_str)
{
char *endptr;
int idx;
if (!index_str) {
PR_WARNING("Interface index is missing.\n");
return -EINVAL;
}
idx = strtol(index_str, &endptr, 10);
if (*endptr != '\0') {
PR_WARNING("Invalid index %s\n", index_str);
return -ENOENT;
}
if (idx < 0 || idx > 255) {
PR_WARNING("Invalid index %d\n", idx);
return -ERANGE;
}
return idx;
}
static int cmd_net_iface_up(const struct shell *shell, size_t argc,
char *argv[])
{
struct net_if *iface;
int idx, ret;
idx = get_iface_idx(shell, argv[1]);
if (idx < 0) {
return -ENOEXEC;
}
iface = net_if_get_by_index(idx);
if (!iface) {
PR_WARNING("No such interface in index %d\n", idx);
return -ENOEXEC;
}
if (net_if_is_up(iface)) {
PR_WARNING("Interface %d is already up.\n", idx);
return -ENOEXEC;
}
ret = net_if_up(iface);
if (ret) {
PR_WARNING("Cannot take interface %d up (%d)\n", idx, ret);
return -ENOEXEC;
} else {
PR("Interface %d is up\n", idx);
}
return 0;
}
static int cmd_net_iface_down(const struct shell *shell, size_t argc,
char *argv[])
{
struct net_if *iface;
int idx, ret;
idx = get_iface_idx(shell, argv[1]);
if (idx < 0) {
return -ENOEXEC;
}
iface = net_if_get_by_index(idx);
if (!iface) {
PR_WARNING("No such interface in index %d\n", idx);
return -ENOEXEC;
}
ret = net_if_down(iface);
if (ret) {
PR_WARNING("Cannot take interface %d down (%d)\n", idx, ret);
return -ENOEXEC;
} else {
PR("Interface %d is down\n", idx);
}
return 0;
}
#if defined(CONFIG_NET_IPV6)
static u32_t time_diff(u32_t time1, u32_t time2)
{
return (u32_t)abs((s32_t)time1 - (s32_t)time2);
}
static void address_lifetime_cb(struct net_if *iface, void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
struct net_if_ipv6 *ipv6 = iface->config.ip.ipv6;
const char *extra;
int i;
ARG_UNUSED(user_data);
PR("\nIPv6 addresses for interface %p (%s)\n", iface,
iface2str(iface, &extra));
PR("==========================================%s\n", extra);
if (!ipv6) {
PR("No IPv6 config found for this interface.\n");
return;
}
PR("Type \tState \tLifetime (sec)\tAddress\n");
for (i = 0; i < NET_IF_MAX_IPV6_ADDR; i++) {
struct net_if_ipv6_prefix *prefix;
char remaining_str[sizeof("01234567890")];
u64_t remaining;
u8_t prefix_len;
if (!ipv6->unicast[i].is_used ||
ipv6->unicast[i].address.family != AF_INET6) {
continue;
}
remaining = (u64_t)ipv6->unicast[i].lifetime.timer_timeout +
(u64_t)ipv6->unicast[i].lifetime.wrap_counter *
(u64_t)NET_TIMEOUT_MAX_VALUE -
(u64_t)time_diff(k_uptime_get_32(),
ipv6->unicast[i].lifetime.timer_start);
prefix = net_if_ipv6_prefix_get(iface,
&ipv6->unicast[i].address.in6_addr);
if (prefix) {
prefix_len = prefix->len;
} else {
prefix_len = 128U;
}
if (ipv6->unicast[i].is_infinite) {
snprintk(remaining_str, sizeof(remaining_str) - 1,
"infinite");
} else {
snprintk(remaining_str, sizeof(remaining_str) - 1,
"%u", (u32_t)(remaining / 1000));
}
PR("%s \t%s\t%s \t%s/%d\n",
addrtype2str(ipv6->unicast[i].addr_type),
addrstate2str(ipv6->unicast[i].addr_state),
remaining_str,
net_sprint_ipv6_addr(
&ipv6->unicast[i].address.in6_addr),
prefix_len);
}
}
#endif /* CONFIG_NET_IPV6 */
static int cmd_net_ipv6(const struct shell *shell, size_t argc, char *argv[])
{
#if defined(CONFIG_NET_IPV6)
struct net_shell_user_data user_data;
#endif
PR("IPv6 support : %s\n",
IS_ENABLED(CONFIG_NET_IPV6) ?
"enabled" : "disabled");
if (!IS_ENABLED(CONFIG_NET_IPV6)) {
return -ENOEXEC;
}
#if defined(CONFIG_NET_IPV6)
PR("IPv6 fragmentation support : %s\n",
IS_ENABLED(CONFIG_NET_IPV6_FRAGMENT) ? "enabled" :
"disabled");
PR("Multicast Listener Discovery support : %s\n",
IS_ENABLED(CONFIG_NET_IPV6_MLD) ? "enabled" :
"disabled");
PR("Neighbor cache support : %s\n",
IS_ENABLED(CONFIG_NET_IPV6_NBR_CACHE) ? "enabled" :
"disabled");
PR("Neighbor discovery support : %s\n",
IS_ENABLED(CONFIG_NET_IPV6_ND) ? "enabled" :
"disabled");
PR("Duplicate address detection (DAD) support : %s\n",
IS_ENABLED(CONFIG_NET_IPV6_DAD) ? "enabled" :
"disabled");
PR("Router advertisement RDNSS option support : %s\n",
IS_ENABLED(CONFIG_NET_IPV6_RA_RDNSS) ? "enabled" :
"disabled");
PR("6lo header compression support : %s\n",
IS_ENABLED(CONFIG_NET_6LO) ? "enabled" :
"disabled");
if (IS_ENABLED(CONFIG_NET_6LO_CONTEXT)) {
PR("6lo context based compression "
"support : %s\n",
IS_ENABLED(CONFIG_NET_6LO_CONTEXT) ? "enabled" :
"disabled");
}
PR("Max number of IPv6 network interfaces "
"in the system : %d\n",
CONFIG_NET_IF_MAX_IPV6_COUNT);
PR("Max number of unicast IPv6 addresses "
"per network interface : %d\n",
CONFIG_NET_IF_UNICAST_IPV6_ADDR_COUNT);
PR("Max number of multicast IPv6 addresses "
"per network interface : %d\n",
CONFIG_NET_IF_MCAST_IPV6_ADDR_COUNT);
PR("Max number of IPv6 prefixes per network "
"interface : %d\n",
CONFIG_NET_IF_IPV6_PREFIX_COUNT);
user_data.shell = shell;
user_data.user_data = NULL;
/* Print information about address lifetime */
net_if_foreach(address_lifetime_cb, &user_data);
#endif
return 0;
}
static int cmd_net_iface(const struct shell *shell, size_t argc, char *argv[])
{
struct net_if *iface = NULL;
struct net_shell_user_data user_data;
int idx;
if (argv[1]) {
idx = get_iface_idx(shell, argv[1]);
if (idx < 0) {
return -ENOEXEC;
}
iface = net_if_get_by_index(idx);
if (!iface) {
PR_WARNING("No such interface in index %d\n", idx);
return -ENOEXEC;
}
}
#if defined(CONFIG_NET_HOSTNAME_ENABLE)
PR("Hostname: %s\n\n", net_hostname_get());
#endif
user_data.shell = shell;
user_data.user_data = iface;
net_if_foreach(iface_cb, &user_data);
return 0;
}
struct ctx_info {
int pos;
bool are_external_pools;
struct k_mem_slab *tx_slabs[CONFIG_NET_MAX_CONTEXTS];
struct net_buf_pool *data_pools[CONFIG_NET_MAX_CONTEXTS];
};
#if defined(CONFIG_NET_CONTEXT_NET_PKT_POOL)
static bool slab_pool_found_already(struct ctx_info *info,
struct k_mem_slab *slab,
struct net_buf_pool *pool)
{
int i;
for (i = 0; i < CONFIG_NET_MAX_CONTEXTS; i++) {
if (slab) {
if (info->tx_slabs[i] == slab) {
return true;
}
} else {
if (info->data_pools[i] == pool) {
return true;
}
}
}
return false;
}
#endif
static void context_info(struct net_context *context, void *user_data)
{
#if defined(CONFIG_NET_CONTEXT_NET_PKT_POOL)
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
struct ctx_info *info = data->user_data;
struct k_mem_slab *slab;
struct net_buf_pool *pool;
if (!net_context_is_used(context)) {
return;
}
if (context->tx_slab) {
slab = context->tx_slab();
if (slab_pool_found_already(info, slab, NULL)) {
return;
}
#if CONFIG_NET_PKT_LOG_LEVEL >= LOG_LEVEL_DBG
PR("%p\t%u\t%u\tETX\n",
slab, slab->num_blocks, k_mem_slab_num_free_get(slab));
#else
PR("%p\t%d\tETX\n", slab, slab->num_blocks);
#endif
info->are_external_pools = true;
info->tx_slabs[info->pos] = slab;
}
if (context->data_pool) {
pool = context->data_pool();
if (slab_pool_found_already(info, NULL, pool)) {
return;
}
#if defined(CONFIG_NET_BUF_POOL_USAGE)
PR("%p\t%d\t%d\tEDATA (%s)\n",
pool, pool->buf_count,
pool->avail_count, pool->name);
#else
PR("%p\t%d\tEDATA\n", pool, pool->buf_count);
#endif
info->are_external_pools = true;
info->data_pools[info->pos] = pool;
}
info->pos++;
#endif /* CONFIG_NET_CONTEXT_NET_PKT_POOL */
}
static int cmd_net_mem(const struct shell *shell, size_t argc, char *argv[])
{
struct k_mem_slab *rx, *tx;
struct net_buf_pool *rx_data, *tx_data;
ARG_UNUSED(argc);
ARG_UNUSED(argv);
net_pkt_get_info(&rx, &tx, &rx_data, &tx_data);
PR("Fragment length %d bytes\n", CONFIG_NET_BUF_DATA_SIZE);
PR("Network buffer pools:\n");
#if defined(CONFIG_NET_BUF_POOL_USAGE)
PR("Address\t\tTotal\tAvail\tName\n");
PR("%p\t%d\t%u\tRX\n",
rx, rx->num_blocks, k_mem_slab_num_free_get(rx));
PR("%p\t%d\t%u\tTX\n",
tx, tx->num_blocks, k_mem_slab_num_free_get(tx));
PR("%p\t%d\t%d\tRX DATA (%s)\n",
rx_data, rx_data->buf_count,
rx_data->avail_count, rx_data->name);
PR("%p\t%d\t%d\tTX DATA (%s)\n",
tx_data, tx_data->buf_count,
tx_data->avail_count, tx_data->name);
#else
PR("(CONFIG_NET_BUF_POOL_USAGE to see free #s)\n");
PR("Address\t\tTotal\tName\n");
PR("%p\t%d\tRX\n", rx, rx->num_blocks);
PR("%p\t%d\tTX\n", tx, tx->num_blocks);
PR("%p\t%d\tRX DATA\n", rx_data, rx_data->buf_count);
PR("%p\t%d\tTX DATA\n", tx_data, tx_data->buf_count);
#endif /* CONFIG_NET_BUF_POOL_USAGE */
if (IS_ENABLED(CONFIG_NET_CONTEXT_NET_PKT_POOL)) {
struct net_shell_user_data user_data;
struct ctx_info info;
(void)memset(&info, 0, sizeof(info));
user_data.shell = shell;
user_data.user_data = &info;
net_context_foreach(context_info, &user_data);
if (!info.are_external_pools) {
PR("No external memory pools found.\n");
}
}
return 0;
}
static int cmd_net_nbr_rm(const struct shell *shell, size_t argc,
char *argv[])
{
#if defined(CONFIG_NET_IPV6)
struct in6_addr addr;
int ret;
#endif
#if defined(CONFIG_NET_IPV6)
if (!argv[1]) {
PR_WARNING("Neighbor IPv6 address missing.\n");
return -ENOEXEC;
}
ret = net_addr_pton(AF_INET6, argv[1], &addr);
if (ret < 0) {
PR_WARNING("Cannot parse '%s'\n", argv[1]);
return -ENOEXEC;
}
if (!net_ipv6_nbr_rm(NULL, &addr)) {
PR_WARNING("Cannot remove neighbor %s\n",
net_sprint_ipv6_addr(&addr));
return -ENOEXEC;
} else {
PR("Neighbor %s removed.\n", net_sprint_ipv6_addr(&addr));
}
#else
ARG_UNUSED(argc);
ARG_UNUSED(argv);
PR_INFO("IPv6 not enabled.\n");
#endif
return 0;
}
#if defined(CONFIG_NET_IPV6)
static void nbr_cb(struct net_nbr *nbr, void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
int *count = data->user_data;
char *padding = "";
char *state_pad = "";
const char *state_str;
#if defined(CONFIG_NET_IPV6_ND)
s64_t remaining;
#endif
#if defined(CONFIG_NET_L2_IEEE802154)
padding = " ";
#endif
if (*count == 0) {
PR(" Neighbor Interface Flags State "
"Remain Link %sAddress\n", padding);
}
(*count)++;
state_str = net_ipv6_nbr_state2str(net_ipv6_nbr_data(nbr)->state);
/* This is not a proper way but the minimal libc does not honor
* string lengths in %s modifier so in order the output to look
* nice, do it like this.
*/
if (strlen(state_str) == 5) {
state_pad = " ";
}
#if defined(CONFIG_NET_IPV6_ND)
remaining = net_ipv6_nbr_data(nbr)->reachable +
net_ipv6_nbr_data(nbr)->reachable_timeout -
k_uptime_get();
#endif
PR("[%2d] %p %p %5d/%d/%d/%d %s%s %6d %17s%s %s\n",
*count, nbr, nbr->iface,
net_ipv6_nbr_data(nbr)->link_metric,
nbr->ref,
net_ipv6_nbr_data(nbr)->ns_count,
net_ipv6_nbr_data(nbr)->is_router,
state_str,
state_pad,
#if defined(CONFIG_NET_IPV6_ND)
(int)(remaining > 0 ? remaining : 0),
#else
0,
#endif
nbr->idx == NET_NBR_LLADDR_UNKNOWN ? "?" :
net_sprint_ll_addr(
net_nbr_get_lladdr(nbr->idx)->addr,
net_nbr_get_lladdr(nbr->idx)->len),
net_nbr_get_lladdr(nbr->idx)->len == 8 ? "" : padding,
net_sprint_ipv6_addr(&net_ipv6_nbr_data(nbr)->addr));
}
#endif
static int cmd_net_nbr(const struct shell *shell, size_t argc, char *argv[])
{
#if defined(CONFIG_NET_IPV6)
int count = 0;
struct net_shell_user_data user_data;
#endif
ARG_UNUSED(argc);
ARG_UNUSED(argv);
#if defined(CONFIG_NET_IPV6)
user_data.shell = shell;
user_data.user_data = &count;
net_ipv6_nbr_foreach(nbr_cb, &user_data);
if (count == 0) {
PR("No neighbors.\n");
}
#else
PR_INFO("IPv6 not enabled.\n");
#endif /* CONFIG_NET_IPV6 */
return 0;
}
#if defined(CONFIG_NET_IPV6) || defined(CONFIG_NET_IPV4)
K_SEM_DEFINE(ping_timeout, 0, 1);
static const struct shell *shell_for_ping;
#if defined(CONFIG_NET_IPV6)
static enum net_verdict _handle_ipv6_echo_reply(struct net_pkt *pkt);
static struct net_icmpv6_handler ping6_handler = {
.type = NET_ICMPV6_ECHO_REPLY,
.code = 0,
.handler = _handle_ipv6_echo_reply,
};
static inline void _remove_ipv6_ping_handler(void)
{
net_icmpv6_unregister_handler(&ping6_handler);
}
static enum net_verdict _handle_ipv6_echo_reply(struct net_pkt *pkt)
{
PR_SHELL(shell_for_ping, "Received echo reply from %s to %s\n",
net_sprint_ipv6_addr(&NET_IPV6_HDR(pkt)->src),
net_sprint_ipv6_addr(&NET_IPV6_HDR(pkt)->dst));
k_sem_give(&ping_timeout);
_remove_ipv6_ping_handler();
net_pkt_unref(pkt);
return NET_OK;
}
static int _ping_ipv6(const struct shell *shell, char *host)
{
struct in6_addr ipv6_target;
struct net_if *iface = net_if_get_default();
struct net_nbr *nbr;
int ret;
#if defined(CONFIG_NET_ROUTE)
struct net_route_entry *route;
#endif
if (net_addr_pton(AF_INET6, host, &ipv6_target) < 0) {
return -EINVAL;
}
net_icmpv6_register_handler(&ping6_handler);
nbr = net_ipv6_nbr_lookup(NULL, &ipv6_target);
if (nbr) {
iface = nbr->iface;
}
#if defined(CONFIG_NET_ROUTE)
route = net_route_lookup(NULL, &ipv6_target);
if (route) {
iface = route->iface;
}
#endif
ret = net_icmpv6_send_echo_request(iface,
&ipv6_target,
sys_rand32_get(),
sys_rand32_get());
if (ret) {
_remove_ipv6_ping_handler();
} else {
PR("Sent a ping to %s\n", host);
}
return ret;
}
#else
#define _ping_ipv6(...) -ENOTSUP
#define _remove_ipv6_ping_handler()
#endif /* CONFIG_NET_IPV6 */
#if defined(CONFIG_NET_IPV4)
static enum net_verdict _handle_ipv4_echo_reply(struct net_pkt *pkt);
static struct net_icmpv4_handler ping4_handler = {
.type = NET_ICMPV4_ECHO_REPLY,
.code = 0,
.handler = _handle_ipv4_echo_reply,
};
static inline void _remove_ipv4_ping_handler(void)
{
net_icmpv4_unregister_handler(&ping4_handler);
}
static enum net_verdict _handle_ipv4_echo_reply(struct net_pkt *pkt)
{
PR_SHELL(shell_for_ping, "Received echo reply from %s to %s\n",
net_sprint_ipv4_addr(&NET_IPV4_HDR(pkt)->src),
net_sprint_ipv4_addr(&NET_IPV4_HDR(pkt)->dst));
k_sem_give(&ping_timeout);
_remove_ipv4_ping_handler();
net_pkt_unref(pkt);
return NET_OK;
}
static int _ping_ipv4(const struct shell *shell, char *host)
{
struct in_addr ipv4_target;
int ret;
if (net_addr_pton(AF_INET, host, &ipv4_target) < 0) {
return -EINVAL;
}
net_icmpv4_register_handler(&ping4_handler);
ret = net_icmpv4_send_echo_request(
net_if_ipv4_select_src_iface(&ipv4_target),
&ipv4_target,
sys_rand32_get(),
sys_rand32_get());
if (ret) {
_remove_ipv4_ping_handler();
} else {
PR("Sent a ping to %s\n", host);
}
return ret;
}
#else
#define _ping_ipv4(...) -ENOTSUP
#define _remove_ipv4_ping_handler()
#endif /* CONFIG_NET_IPV4 */
#endif /* CONFIG_NET_IPV6 || CONFIG_NET_IPV4 */
static int cmd_net_ping(const struct shell *shell, size_t argc, char *argv[])
{
char *host;
int ret;
ARG_UNUSED(argc);
host = argv[1];
if (!host) {
PR_WARNING("Target host missing\n");
return -ENOEXEC;
}
shell_for_ping = shell;
if (IS_ENABLED(CONFIG_NET_IPV6)) {
ret = _ping_ipv6(shell, host);
if (!ret) {
goto wait_reply;
} else if (ret == -EIO) {
PR_WARNING("Cannot send IPv6 ping\n");
return -ENOEXEC;
}
}
if (IS_ENABLED(CONFIG_NET_IPV4)) {
ret = _ping_ipv4(shell, host);
if (ret) {
if (ret == -EIO) {
PR_WARNING("Cannot send IPv4 ping\n");
} else if (ret == -EINVAL) {
PR_WARNING("Invalid IP address\n");
}
return -ENOEXEC;
}
}
wait_reply:
ret = k_sem_take(&ping_timeout, K_SECONDS(2));
if (ret == -EAGAIN) {
PR_INFO("Ping timeout\n");
_remove_ipv6_ping_handler();
_remove_ipv4_ping_handler();
return -ETIMEDOUT;
}
return 0;
}
static int cmd_net_route(const struct shell *shell, size_t argc, char *argv[])
{
#if defined(CONFIG_NET_ROUTE) || defined(CONFIG_NET_ROUTE_MCAST)
struct net_shell_user_data user_data;
#endif
ARG_UNUSED(argc);
ARG_UNUSED(argv);
#if defined(CONFIG_NET_ROUTE) || defined(CONFIG_NET_ROUTE_MCAST)
user_data.shell = shell;
#endif
#if defined(CONFIG_NET_ROUTE)
net_if_foreach(iface_per_route_cb, &user_data);
#else
PR_INFO("Network route support not enabled. "
"Set CONFIG_NET_ROUTE to enable it.\n");
#endif
#if defined(CONFIG_NET_ROUTE_MCAST)
net_if_foreach(iface_per_mcast_route_cb, &user_data);
#endif
return 0;
}
#if defined(CONFIG_NET_RPL)
static int power(int base, unsigned int exp)
{
int i, result = 1;
for (i = 0; i < exp; i++) {
result *= base;
}
return result;
}
static void rpl_parent(struct net_rpl_parent *parent, void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
int *count = data->user_data;
if (*count == 0) {
PR(" Parent Last TX Rank DTSN Flags DAG\t\t\t"
"Address\n");
}
(*count)++;
if (parent->dag) {
struct net_ipv6_nbr_data *data;
char addr[NET_IPV6_ADDR_LEN];
data = net_rpl_get_ipv6_nbr_data(parent);
if (data) {
snprintk(addr, sizeof(addr), "%s",
net_sprint_ipv6_addr(&data->addr));
} else {
snprintk(addr, sizeof(addr), "<unknown>");
}
PR("[%2d]%s %p %7d %5d %3d 0x%02x %s\t%s\n",
*count,
parent->dag->preferred_parent == parent ? "*" : " ",
parent, parent->last_tx_time, parent->rank,
parent->dtsn, parent->flags,
net_sprint_ipv6_addr(&parent->dag->dag_id),
addr);
}
}
#endif /* CONFIG_NET_RPL */
static int cmd_net_rpl(const struct shell *shell, size_t argc, char *argv[])
{
#if defined(CONFIG_NET_RPL)
struct net_rpl_instance *instance;
struct net_shell_user_data user_data;
enum net_rpl_mode mode;
int i, count;
#endif
ARG_UNUSED(argc);
ARG_UNUSED(argv);
#if defined(CONFIG_NET_RPL)
mode = net_rpl_get_mode();
PR("RPL Configuration\n");
PR("=================\n");
PR("RPL mode : %s\n",
mode == NET_RPL_MODE_MESH ? "mesh" :
(mode == NET_RPL_MODE_FEATHER ? "feather" :
(mode == NET_RPL_MODE_LEAF ? "leaf" : "<unknown>")));
PR("Used objective function : %s\n",
IS_ENABLED(CONFIG_NET_RPL_MRHOF) ? "MRHOF" :
(IS_ENABLED(CONFIG_NET_RPL_OF0) ? "OF0" : "<unknown>"));
PR("Used routing metric : %s\n",
IS_ENABLED(CONFIG_NET_RPL_MC_NONE) ? "none" :
(IS_ENABLED(CONFIG_NET_RPL_MC_ETX) ? "estimated num of TX" :
(IS_ENABLED(CONFIG_NET_RPL_MC_ENERGY) ? "energy based" :
"<unknown>")));
PR("Mode of operation (MOP) : %s\n",
IS_ENABLED(CONFIG_NET_RPL_MOP2) ? "Storing, no mcast (MOP2)" :
(IS_ENABLED(CONFIG_NET_RPL_MOP3) ? "Storing (MOP3)" :
"<unknown>"));
PR("Send probes to nodes : %s\n",
IS_ENABLED(CONFIG_NET_RPL_PROBING) ? "enabled" : "disabled");
PR("Max instances : %d\n",
CONFIG_NET_RPL_MAX_INSTANCES);
PR("Max DAG / instance : %d\n",
CONFIG_NET_RPL_MAX_DAG_PER_INSTANCE);
PR("Min hop rank increment : %d\n",
CONFIG_NET_RPL_MIN_HOP_RANK_INC);
PR("Initial link metric : %d\n",
CONFIG_NET_RPL_INIT_LINK_METRIC);
PR("RPL preference value : %d\n",
CONFIG_NET_RPL_PREFERENCE);
PR("DAG grounded by default : %s\n",
IS_ENABLED(CONFIG_NET_RPL_GROUNDED) ? "yes" : "no");
PR("Default instance id : %d (0x%02x)\n",
CONFIG_NET_RPL_DEFAULT_INSTANCE,
CONFIG_NET_RPL_DEFAULT_INSTANCE);
PR("Insert Hop-by-hop option : %s\n",
IS_ENABLED(CONFIG_NET_RPL_INSERT_HBH_OPTION) ? "yes" : "no");
PR("Specify DAG when sending DAO : %s\n",
IS_ENABLED(CONFIG_NET_RPL_DAO_SPECIFY_DAG) ? "yes" : "no");
PR("DIO min interval : %d (%d ms)\n",
CONFIG_NET_RPL_DIO_INTERVAL_MIN,
power(2, CONFIG_NET_RPL_DIO_INTERVAL_MIN));
PR("DIO doublings interval : %d\n",
CONFIG_NET_RPL_DIO_INTERVAL_DOUBLINGS);
PR("DIO redundancy value : %d\n",
CONFIG_NET_RPL_DIO_REDUNDANCY);
PR("DAO sending timer value : %d sec\n",
CONFIG_NET_RPL_DAO_TIMER);
PR("DAO max retransmissions : %d\n",
CONFIG_NET_RPL_DAO_MAX_RETRANSMISSIONS);
PR("Node expecting DAO ack : %s\n",
IS_ENABLED(CONFIG_NET_RPL_DAO_ACK) ? "yes" : "no");
PR("Send DIS periodically : %s\n",
IS_ENABLED(CONFIG_NET_RPL_DIS_SEND) ? "yes" : "no");
#if defined(CONFIG_NET_RPL_DIS_SEND)
PR("DIS interval : %d sec\n",
CONFIG_NET_RPL_DIS_INTERVAL);
#endif
PR("Default route lifetime unit : %d sec\n",
CONFIG_NET_RPL_DEFAULT_LIFETIME_UNIT);
PR("Default route lifetime : %d\n",
CONFIG_NET_RPL_DEFAULT_LIFETIME);
#if defined(CONFIG_NET_RPL_MOP3)
PR("Multicast route lifetime : %d\n",
CONFIG_NET_RPL_MCAST_LIFETIME);
#endif
PR("\nRuntime status\n");
PR("==============\n");
instance = net_rpl_get_default_instance();
if (!instance) {
PR_WARNING("No default RPL instance found.\n");
return -ENOEXEC;
}
PR("Default instance (id %d) : %p (%s)\n", instance->instance_id,
instance, instance->is_used ? "active" : "disabled");
if (instance->default_route) {
PR("Default route : %s\n",
net_sprint_ipv6_addr(
&instance->default_route->address.in6_addr));
}
#if defined(CONFIG_NET_STATISTICS_RPL)
PR("DIO statistics : intervals %d sent %d recv %d\n",
instance->dio_intervals, instance->dio_send_pkt,
instance->dio_recv_pkt);
#endif /* CONFIG_NET_STATISTICS_RPL */
PR("Instance DAGs :\n");
for (i = 0, count = 0; i < CONFIG_NET_RPL_MAX_DAG_PER_INSTANCE; i++) {
if (!instance->dags[i].is_used) {
continue;
}
PR("[%2d]%s %s prefix %s/%d rank %d/%d ver %d flags %c%c "
"parent %p\n",
++count,
&instance->dags[i] == instance->current_dag ? "*" : " ",
net_sprint_ipv6_addr(&instance->dags[i].dag_id),
net_sprint_ipv6_addr(
&instance->dags[i].prefix_info.prefix),
instance->dags[i].prefix_info.length,
instance->dags[i].rank, instance->dags[i].min_rank,
instance->dags[i].version,
instance->dags[i].is_grounded ? 'G' : 'g',
instance->dags[i].is_joined ? 'J' : 'j',
instance->dags[i].preferred_parent);
}
PR("\n");
count = 0;
user_data.shell = shell;
user_data.user_data = &count;
i = net_rpl_foreach_parent(rpl_parent, &user_data);
if (i == 0) {
PR_WARNING("No parents found.\n");
}
PR("\n");
#else
PR_INFO("RPL not enabled, set CONFIG_NET_RPL to enable it.\n");
#endif
return 0;
}
#if defined(CONFIG_INIT_STACKS)
extern K_THREAD_STACK_DEFINE(_main_stack, CONFIG_MAIN_STACK_SIZE);
extern K_THREAD_STACK_DEFINE(_interrupt_stack, CONFIG_ISR_STACK_SIZE);
extern K_THREAD_STACK_DEFINE(sys_work_q_stack,
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE);
#endif
static int cmd_net_stacks(const struct shell *shell, size_t argc,
char *argv[])
{
#if defined(CONFIG_INIT_STACKS)
unsigned int pcnt, unused;
#endif
struct net_stack_info *info;
ARG_UNUSED(argc);
ARG_UNUSED(argv);
for (info = __net_stack_start; info != __net_stack_end; info++) {
net_analyze_stack_get_values(K_THREAD_STACK_BUFFER(info->stack),
info->size, &pcnt, &unused);
#if defined(CONFIG_INIT_STACKS)
/* If the index is <0, then this stack is not part of stack
* array so do not print the index value in this case.
*/
if (info->idx >= 0) {
PR("%s-%d [%s-%d] stack size %zu/%zu bytes "
"unused %u usage %zu/%zu (%u %%)\n",
info->pretty_name, info->prio, info->name,
info->idx, info->orig_size,
info->size, unused,
info->size - unused, info->size, pcnt);
} else {
PR("%s [%s] stack size %zu/%zu bytes unused %u "
"usage %zu/%zu (%u %%)\n",
info->pretty_name, info->name, info->orig_size,
info->size, unused,
info->size - unused, info->size, pcnt);
}
#else
PR("%s [%s] stack size %zu usage not available\n",
info->pretty_name, info->name, info->orig_size);
#endif
}
#if defined(CONFIG_INIT_STACKS)
net_analyze_stack_get_values(K_THREAD_STACK_BUFFER(_main_stack),
K_THREAD_STACK_SIZEOF(_main_stack),
&pcnt, &unused);
PR("%s [%s] stack size %d/%d bytes unused %u usage %d/%d (%u %%)\n",
"main", "_main_stack", CONFIG_MAIN_STACK_SIZE,
CONFIG_MAIN_STACK_SIZE, unused,
CONFIG_MAIN_STACK_SIZE - unused, CONFIG_MAIN_STACK_SIZE, pcnt);
net_analyze_stack_get_values(K_THREAD_STACK_BUFFER(_interrupt_stack),
K_THREAD_STACK_SIZEOF(_interrupt_stack),
&pcnt, &unused);
PR("%s [%s] stack size %d/%d bytes unused %u usage %d/%d (%u %%)\n",
"ISR", "_interrupt_stack", CONFIG_ISR_STACK_SIZE,
CONFIG_ISR_STACK_SIZE, unused,
CONFIG_ISR_STACK_SIZE - unused, CONFIG_ISR_STACK_SIZE, pcnt);
net_analyze_stack_get_values(K_THREAD_STACK_BUFFER(sys_work_q_stack),
K_THREAD_STACK_SIZEOF(sys_work_q_stack),
&pcnt, &unused);
PR("%s [%s] stack size %d/%d bytes unused %u usage %d/%d (%u %%)\n",
"WORKQ", "system workqueue",
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE,
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE, unused,
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE - unused,
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE, pcnt);
#else
PR_INFO("Enable CONFIG_INIT_STACKS to see usage information.\n");
#endif
return 0;
}
#if defined(CONFIG_NET_STATISTICS_PER_INTERFACE)
static void net_shell_print_statistics_all(struct net_shell_user_data *data)
{
net_if_foreach(net_shell_print_statistics, data);
}
#endif
static int cmd_net_stats_all(const struct shell *shell, size_t argc,
char *argv[])
{
#if defined(CONFIG_NET_STATISTICS)
struct net_shell_user_data user_data;
#endif
#if defined(CONFIG_NET_STATISTICS)
user_data.shell = shell;
/* Print global network statistics */
net_shell_print_statistics_all(&user_data);
#else
ARG_UNUSED(argc);
ARG_UNUSED(argv);
PR_INFO("Network statistics not enabled. Set CONFIG_NET_STATISTICS "
"to enable it.\n");
#endif
return 0;
}
static int cmd_net_stats_iface(const struct shell *shell, size_t argc,
char *argv[])
{
#if defined(CONFIG_NET_STATISTICS)
#if defined(CONFIG_NET_STATISTICS_PER_INTERFACE)
struct net_shell_user_data data;
struct net_if *iface;
char *endptr;
int idx;
#endif
#endif
#if defined(CONFIG_NET_STATISTICS)
#if defined(CONFIG_NET_STATISTICS_PER_INTERFACE)
idx = strtol(argv[1], &endptr, 10);
if (*endptr != '\0') {
PR_WARNING("Invalid index %s\n", argv[1]);
return -ENOEXEC;
}
iface = net_if_get_by_index(idx);
if (!iface) {
PR_WARNING("No such interface in index %d\n", idx);
return -ENOEXEC;
}
data.shell = shell;
net_shell_print_statistics(iface, &data);
#else
PR_INFO("Per network interface statistics not collected.\n");
PR_INFO("Please enable CONFIG_NET_STATISTICS_PER_INTERFACE\n");
#endif /* CONFIG_NET_STATISTICS_PER_INTERFACE */
#else
ARG_UNUSED(argc);
ARG_UNUSED(argv);
PR_INFO("Network statistics not enabled. Set CONFIG_NET_STATISTICS "
"to enable it.\n");
#endif
return 0;
}
static int cmd_net_stats(const struct shell *shell, size_t argc, char *argv[])
{
#if defined(CONFIG_NET_STATISTICS)
if (!argv[1]) {
cmd_net_stats_all(shell, argc, argv);
return 0;
}
cmd_net_stats_iface(shell, argc, argv);
#else
ARG_UNUSED(argc);
ARG_UNUSED(argv);
PR_INFO("Network statistics not enabled. Set CONFIG_NET_STATISTICS "
"to enable it.\n");
#endif
return 0;
}
#if defined(CONFIG_NET_TCP)
static struct net_context *tcp_ctx;
static const struct shell *tcp_shell;
#define TCP_CONNECT_TIMEOUT K_SECONDS(5) /* ms */
#define TCP_TIMEOUT K_SECONDS(2) /* ms */
static void tcp_connected(struct net_context *context,
int status,
void *user_data)
{
if (status < 0) {
PR_SHELL(tcp_shell, "TCP connection failed (%d)\n", status);
net_context_put(context);
tcp_ctx = NULL;
} else {
PR_SHELL(tcp_shell, "TCP connected\n");
}
}
static void get_my_ipv6_addr(struct net_if *iface,
struct sockaddr *myaddr)
{
#if defined(CONFIG_NET_IPV6)
const struct in6_addr *my6addr;
my6addr = net_if_ipv6_select_src_addr(iface,
&net_sin6(myaddr)->sin6_addr);
memcpy(&net_sin6(myaddr)->sin6_addr, my6addr, sizeof(struct in6_addr));
net_sin6(myaddr)->sin6_port = 0; /* let the IP stack to select */
#endif
}
static void get_my_ipv4_addr(struct net_if *iface,
struct sockaddr *myaddr)
{
#if defined(CONFIG_NET_IPV4)
/* Just take the first IPv4 address of an interface. */
memcpy(&net_sin(myaddr)->sin_addr,
&iface->config.ip.ipv4->unicast[0].address.in_addr,
sizeof(struct in_addr));
net_sin(myaddr)->sin_port = 0; /* let the IP stack to select */
#endif
}
static void print_connect_info(const struct shell *shell,
int family,
struct sockaddr *myaddr,
struct sockaddr *addr)
{
switch (family) {
case AF_INET:
if (IS_ENABLED(CONFIG_NET_IPV4)) {
PR("Connecting from %s:%u ",
net_sprint_ipv4_addr(&net_sin(myaddr)->sin_addr),
ntohs(net_sin(myaddr)->sin_port));
PR("to %s:%u\n",
net_sprint_ipv4_addr(&net_sin(addr)->sin_addr),
ntohs(net_sin(addr)->sin_port));
} else {
PR_INFO("IPv4 not supported\n");
}
break;
case AF_INET6:
if (IS_ENABLED(CONFIG_NET_IPV6)) {
PR("Connecting from [%s]:%u ",
net_sprint_ipv6_addr(&net_sin6(myaddr)->sin6_addr),
ntohs(net_sin6(myaddr)->sin6_port));
PR("to [%s]:%u\n",
net_sprint_ipv6_addr(&net_sin6(addr)->sin6_addr),
ntohs(net_sin6(addr)->sin6_port));
} else {
PR_INFO("IPv6 not supported\n");
}
break;
default:
PR_WARNING("Unknown protocol family (%d)\n", family);
break;
}
}
static void tcp_connect(const struct shell *shell, char *host, u16_t port,
struct net_context **ctx)
{
struct net_if *iface = net_if_get_default();
struct sockaddr myaddr;
struct sockaddr addr;
struct net_nbr *nbr;
int addrlen;
int family;
int ret;
if (IS_ENABLED(CONFIG_NET_IPV6) && !IS_ENABLED(CONFIG_NET_IPV4)) {
ret = net_addr_pton(AF_INET6, host,
&net_sin6(&addr)->sin6_addr);
if (ret < 0) {
PR_WARNING("Invalid IPv6 address\n");
return;
}
net_sin6(&addr)->sin6_port = htons(port);
addrlen = sizeof(struct sockaddr_in6);
nbr = net_ipv6_nbr_lookup(NULL, &net_sin6(&addr)->sin6_addr);
if (nbr) {
iface = nbr->iface;
}
get_my_ipv6_addr(iface, &myaddr);
family = addr.sa_family = myaddr.sa_family = AF_INET6;
} else if (IS_ENABLED(CONFIG_NET_IPV4) &&
!IS_ENABLED(CONFIG_NET_IPV6)) {
ARG_UNUSED(nbr);
ret = net_addr_pton(AF_INET, host, &net_sin(&addr)->sin_addr);
if (ret < 0) {
PR_WARNING("Invalid IPv4 address\n");
return;
}
get_my_ipv4_addr(iface, &myaddr);
net_sin(&addr)->sin_port = htons(port);
addrlen = sizeof(struct sockaddr_in);
family = addr.sa_family = myaddr.sa_family = AF_INET;
} else if (IS_ENABLED(CONFIG_NET_IPV6) &&
IS_ENABLED(CONFIG_NET_IPV4)) {
ret = net_addr_pton(AF_INET6, host,
&net_sin6(&addr)->sin6_addr);
if (ret < 0) {
ret = net_addr_pton(AF_INET, host,
&net_sin(&addr)->sin_addr);
if (ret < 0) {
PR_WARNING("Invalid IP address\n");
return;
}
net_sin(&addr)->sin_port = htons(port);
addrlen = sizeof(struct sockaddr_in);
get_my_ipv4_addr(iface, &myaddr);
family = addr.sa_family = myaddr.sa_family = AF_INET;
} else {
net_sin6(&addr)->sin6_port = htons(port);
addrlen = sizeof(struct sockaddr_in6);
nbr = net_ipv6_nbr_lookup(NULL,
&net_sin6(&addr)->sin6_addr);
if (nbr) {
iface = nbr->iface;
}
get_my_ipv6_addr(iface, &myaddr);
family = addr.sa_family = myaddr.sa_family = AF_INET6;
}
} else {
PR_WARNING("No IPv6 nor IPv4 is enabled\n");
return;
}
print_connect_info(shell, family, &myaddr, &addr);
ret = net_context_get(family, SOCK_STREAM, IPPROTO_TCP, ctx);
if (ret < 0) {
PR_WARNING("Cannot get TCP context (%d)\n", ret);
return;
}
ret = net_context_bind(*ctx, &myaddr, addrlen);
if (ret < 0) {
PR_WARNING("Cannot bind TCP (%d)\n", ret);
return;
}
/* Note that we cannot put shell as a user_data when connecting
* because the tcp_connected() will be called much later and
* all local stack variables are lost at that point.
*/
tcp_shell = shell;
net_context_connect(*ctx, &addr, addrlen, tcp_connected,
K_NO_WAIT, NULL);
}
static void tcp_sent_cb(struct net_context *context,
int status,
void *token,
void *user_data)
{
PR_SHELL(tcp_shell, "Message sent\n");
}
#endif
static int cmd_net_tcp_connect(const struct shell *shell, size_t argc,
char *argv[])
{
#if defined(CONFIG_NET_TCP)
int arg = 0;
/* tcp connect <ip> port */
char *endptr;
char *ip;
u16_t port;
#endif
#if defined(CONFIG_NET_TCP)
/* tcp connect <ip> port */
if (tcp_ctx && net_context_is_used(tcp_ctx)) {
PR("Already connected\n");
return -ENOEXEC;
}
if (!argv[++arg]) {
PR_WARNING("Peer IP address missing.\n");
return -ENOEXEC;
}
ip = argv[arg];
if (!argv[++arg]) {
PR_WARNING("Peer port missing.\n");
return -ENOEXEC;
}
port = strtol(argv[arg], &endptr, 10);
if (*endptr != '\0') {
PR_WARNING("Invalid port %s\n", argv[arg]);
return -ENOEXEC;
}
tcp_connect(shell, ip, port, &tcp_ctx);
#else
PR_INFO("TCP not enabled. Set CONFIG_NET_TCP to enable it.\n");
#endif /* CONFIG_NET_TCP */
return 0;
}
static int cmd_net_tcp_send(const struct shell *shell, size_t argc,
char *argv[])
{
#if defined(CONFIG_NET_TCP)
int arg = 0;
int ret;
struct net_shell_user_data user_data;
struct net_pkt *pkt;
#endif
#if defined(CONFIG_NET_TCP)
/* tcp send <data> */
if (!tcp_ctx || !net_context_is_used(tcp_ctx)) {
PR_WARNING("Not connected\n");
return -ENOEXEC;
}
if (!argv[++arg]) {
PR_WARNING("No data to send.\n");
return -ENOEXEC;
}
pkt = net_pkt_get_tx(tcp_ctx, TCP_TIMEOUT);
if (!pkt) {
PR_WARNING("Out of pkts, msg cannot be sent.\n");
return -ENOEXEC;
}
ret = net_pkt_append_all(pkt, strlen(argv[arg]), (u8_t *)argv[arg],
TCP_TIMEOUT);
if (!ret) {
PR_WARNING("Cannot build msg (out of pkts)\n");
net_pkt_unref(pkt);
return -ENOEXEC;
}
user_data.shell = shell;
ret = net_context_send(pkt, tcp_sent_cb, TCP_TIMEOUT, NULL,
&user_data);
if (ret < 0) {
PR_WARNING("Cannot send msg (%d)\n", ret);
net_pkt_unref(pkt);
return -ENOEXEC;
}
#else
PR_INFO("TCP not enabled. Set CONFIG_NET_TCP to enable it.\n");
#endif /* CONFIG_NET_TCP */
return 0;
}
static int cmd_net_tcp_close(const struct shell *shell, size_t argc,
char *argv[])
{
#if defined(CONFIG_NET_TCP)
int ret;
#endif
#if defined(CONFIG_NET_TCP)
/* tcp close */
if (!tcp_ctx || !net_context_is_used(tcp_ctx)) {
PR_WARNING("Not connected\n");
return -ENOEXEC;
}
ret = net_context_put(tcp_ctx);
if (ret < 0) {
PR_WARNING("Cannot close the connection (%d)\n", ret);
return -ENOEXEC;
}
PR("Connection closed.\n");
tcp_ctx = NULL;
#else
PR_INFO("TCP not enabled. Set CONFIG_NET_TCP to enable it.\n");
#endif /* CONFIG_NET_TCP */
return 0;
}
static int cmd_net_tcp(const struct shell *shell, size_t argc, char *argv[])
{
ARG_UNUSED(argc);
ARG_UNUSED(argv);
return 0;
}
#if defined(CONFIG_NET_VLAN)
static void iface_vlan_del_cb(struct net_if *iface, void *user_data)
{
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
u16_t vlan_tag = POINTER_TO_UINT(data->user_data);
int ret;
ret = net_eth_vlan_disable(iface, vlan_tag);
if (ret < 0) {
if (ret != -ESRCH) {
PR_WARNING("Cannot delete VLAN tag %d from "
"interface %p\n",
vlan_tag, iface);
}
return;
}
PR("VLAN tag %d removed from interface %p\n", vlan_tag, iface);
}
static void iface_vlan_cb(struct net_if *iface, void *user_data)
{
struct ethernet_context *ctx = net_if_l2_data(iface);
struct net_shell_user_data *data = user_data;
const struct shell *shell = data->shell;
int *count = data->user_data;
int i;
if (net_if_l2(iface) != &NET_L2_GET_NAME(ETHERNET)) {
return;
}
if (*count == 0) {
PR(" Interface Type Tag\n");
}
if (!ctx->vlan_enabled) {
PR_WARNING("VLAN tag(s) not set\n");
return;
}
for (i = 0; i < NET_VLAN_MAX_COUNT; i++) {
if (!ctx->vlan[i].iface || ctx->vlan[i].iface != iface) {
continue;
}
if (ctx->vlan[i].tag == NET_VLAN_TAG_UNSPEC) {
continue;
}
PR("[%d] %p %s %d\n", net_if_get_by_iface(iface), iface,
iface2str(iface, NULL), ctx->vlan[i].tag);
break;
}
(*count)++;
}
#endif /* CONFIG_NET_VLAN */
static int cmd_net_vlan(const struct shell *shell, size_t argc, char *argv[])
{
#if defined(CONFIG_NET_VLAN)
struct net_shell_user_data user_data;
int count;
#endif
#if defined(CONFIG_NET_VLAN)
count = 0;
user_data.shell = shell;
user_data.user_data = &count;
net_if_foreach(iface_vlan_cb, &user_data);
#else
PR_INFO("Set CONFIG_NET_VLAN to enable virtual LAN support.\n");
#endif /* CONFIG_NET_VLAN */
return 0;
}
static int cmd_net_vlan_add(const struct shell *shell, size_t argc,
char *argv[])
{
#if defined(CONFIG_NET_VLAN)
int arg = 0;
int ret;
u16_t tag;
struct net_if *iface;
char *endptr;
u32_t iface_idx;
#endif
#if defined(CONFIG_NET_VLAN)
/* vlan add <tag> <interface index> */
if (!argv[++arg]) {
PR_WARNING("VLAN tag missing.\n");
goto usage;
}
tag = strtol(argv[arg], &endptr, 10);
if (*endptr != '\0') {
PR_WARNING("Invalid tag %s\n", argv[arg]);
return -ENOEXEC;
}
if (!argv[++arg]) {
PR_WARNING("Network interface index missing.\n");
goto usage;
}
iface_idx = strtol(argv[arg], &endptr, 10);
if (*endptr != '\0') {
PR_WARNING("Invalid index %s\n", argv[arg]);
goto usage;
}
iface = net_if_get_by_index(iface_idx);
if (!iface) {
PR_WARNING("Network interface index %d is invalid.\n",
iface_idx);
goto usage;
}
if (net_if_l2(iface) != &NET_L2_GET_NAME(ETHERNET)) {
PR_WARNING("Network interface %p is not ethernet interface\n",
iface);
return -ENOEXEC;
}
ret = net_eth_vlan_enable(iface, tag);
if (ret < 0) {
if (ret == -ENOENT) {
PR_WARNING("No IP address configured.\n");
}
PR_WARNING("Cannot set VLAN tag (%d)\n", ret);
return -ENOEXEC;
}
PR("VLAN tag %d set to interface %p\n", tag, iface);
return 0;
usage:
PR("Usage:\n");
PR("\tvlan add <tag> <interface index>\n");
#else
PR_INFO("Set CONFIG_NET_VLAN to enable virtual LAN support.\n");
#endif /* CONFIG_NET_VLAN */
return 0;
}
static int cmd_net_vlan_del(const struct shell *shell, size_t argc,
char *argv[])
{
#if defined(CONFIG_NET_VLAN)
int arg = 0;
struct net_shell_user_data user_data;
char *endptr;
u16_t tag;
#endif
#if defined(CONFIG_NET_VLAN)
/* vlan del <tag> */
if (!argv[++arg]) {
PR_WARNING("VLAN tag missing.\n");
goto usage;
}
tag = strtol(argv[arg], &endptr, 10);
if (*endptr != '\0') {
PR_WARNING("Invalid tag %s\n", argv[arg]);
return -ENOEXEC;
}
user_data.shell = shell;
user_data.user_data = UINT_TO_POINTER((u32_t)tag);
net_if_foreach(iface_vlan_del_cb, &user_data);
return 0;
usage:
PR("Usage:\n");
PR("\tvlan del <tag>\n");
#else
PR_INFO("Set CONFIG_NET_VLAN to enable virtual LAN support.\n");
#endif /* CONFIG_NET_VLAN */
return 0;
}
SHELL_CREATE_STATIC_SUBCMD_SET(net_cmd_arp)
{
SHELL_CMD(flush, NULL, "Remove all entries from ARP cache.",
cmd_net_arp_flush),
SHELL_SUBCMD_SET_END
};
SHELL_CREATE_STATIC_SUBCMD_SET(net_cmd_dns)
{
SHELL_CMD(cancel, NULL, "Cancel all pending requests.",
cmd_net_dns_cancel),
SHELL_CMD(query, NULL,
"'net dns <hostname> [A or AAAA]' queries IPv4 address "
"(default) or IPv6 address for a host name.",
cmd_net_dns_query),
SHELL_SUBCMD_SET_END
};
SHELL_CREATE_STATIC_SUBCMD_SET(net_cmd_gptp)
{
SHELL_CMD(port, NULL,
"'net gptp [<port>]' prints detailed information about "
"gPTP port.",
cmd_net_gptp_port),
SHELL_SUBCMD_SET_END
};
SHELL_CREATE_STATIC_SUBCMD_SET(net_cmd_http)
{
SHELL_CMD(monitor, NULL, "Start monitoring HTTP connections.",
cmd_net_http_monitor),
SHELL_SUBCMD_SET_END
};
#if !defined(NET_VLAN_MAX_COUNT)
#define MAX_IFACE_COUNT NET_IF_MAX_CONFIGS
#else
#define MAX_IFACE_COUNT NET_VLAN_MAX_COUNT
#endif
#if defined(CONFIG_NET_SHELL_DYN_CMD_COMPLETION)
#define MAX_IFACE_HELP_STR_LEN sizeof("longbearername (0xabcd0123)")
#define MAX_IFACE_STR_LEN sizeof("xxx")
static char iface_help_buffer[MAX_IFACE_COUNT][MAX_IFACE_HELP_STR_LEN];
static char iface_index_buffer[MAX_IFACE_COUNT][MAX_IFACE_STR_LEN];
static char *set_iface_index_buffer(size_t idx)
{
struct net_if *iface = net_if_get_by_index(idx);
if (!iface) {
return NULL;
}
snprintk(iface_index_buffer[idx], MAX_IFACE_STR_LEN, "%zu", idx);
return iface_index_buffer[idx];
}
static char *set_iface_index_help(size_t idx)
{
struct net_if *iface = net_if_get_by_index(idx);
if (!iface) {
return NULL;
}
snprintk(iface_help_buffer[idx], MAX_IFACE_HELP_STR_LEN,
"%s (%p)", iface2str(iface, NULL), iface);
return iface_help_buffer[idx];
}
static void iface_index_get(size_t idx, struct shell_static_entry *entry);
SHELL_CREATE_DYNAMIC_CMD(iface_index, iface_index_get);
static void iface_index_get(size_t idx, struct shell_static_entry *entry)
{
entry->handler = NULL;
entry->help = set_iface_index_help(idx);
entry->subcmd = &iface_index;
entry->syntax = set_iface_index_buffer(idx);
}
#define IFACE_DYN_CMD &iface_index
#else
#define IFACE_DYN_CMD NULL
#endif /* CONFIG_NET_SHELL_DYN_CMD_COMPLETION */
SHELL_CREATE_STATIC_SUBCMD_SET(net_cmd_iface)
{
SHELL_CMD(up, IFACE_DYN_CMD,
"'net iface up <index>' takes network interface up.",
cmd_net_iface_up),
SHELL_CMD(down, IFACE_DYN_CMD,
"'net iface down <index>' takes network interface "
"down.",
cmd_net_iface_down),
SHELL_CMD(show, IFACE_DYN_CMD,
"'net iface <index>' shows network interface "
"information.",
cmd_net_iface),
SHELL_SUBCMD_SET_END
};
#if defined(CONFIG_NET_IPV6) && defined(CONFIG_NET_SHELL_DYN_CMD_COMPLETION)
static
char nbr_address_buffer[CONFIG_NET_IPV6_MAX_NEIGHBORS][NET_IPV6_ADDR_LEN];
static void nbr_address_cb(struct net_nbr *nbr, void *user_data)
{
int *count = user_data;
if (*count >= CONFIG_NET_IPV6_MAX_NEIGHBORS) {
return;
}
snprintk(nbr_address_buffer[*count], NET_IPV6_ADDR_LEN,
"%s", net_sprint_ipv6_addr(&net_ipv6_nbr_data(nbr)->addr));
(*count)++;
}
static void nbr_populate_addresses(void)
{
int count = 0;
net_ipv6_nbr_foreach(nbr_address_cb, &count);
}
static char *set_nbr_address(size_t idx)
{
if (idx == 0) {
memset(nbr_address_buffer, 0, sizeof(nbr_address_buffer));
nbr_populate_addresses();
}
if (idx >= CONFIG_NET_IPV6_MAX_NEIGHBORS) {
return NULL;
}
if (!nbr_address_buffer[idx][0]) {
return NULL;
}
return nbr_address_buffer[idx];
}
static void nbr_address_get(size_t idx, struct shell_static_entry *entry);
SHELL_CREATE_DYNAMIC_CMD(nbr_address, nbr_address_get);
#define NBR_ADDRESS_CMD &nbr_address
static void nbr_address_get(size_t idx, struct shell_static_entry *entry)
{
entry->handler = NULL;
entry->help = NULL;
entry->subcmd = &nbr_address;
entry->syntax = set_nbr_address(idx);
}
#else
#define NBR_ADDRESS_CMD NULL
#endif /* CONFIG_NET_IPV6 && CONFIG_NET_SHELL_DYN_CMD_COMPLETION */
SHELL_CREATE_STATIC_SUBCMD_SET(net_cmd_nbr)
{
SHELL_CMD(rm, NBR_ADDRESS_CMD,
"'net nbr rm <address>' removes neighbor from cache.",
cmd_net_nbr_rm),
SHELL_SUBCMD_SET_END
};
#if defined(CONFIG_NET_STATISTICS) && \
defined(CONFIG_NET_STATISTICS_PER_INTERFACE) && \
defined(CONFIG_NET_SHELL_DYN_CMD_COMPLETION)
#define STATS_IFACE_CMD &iface_index
#else
#define STATS_IFACE_CMD NULL
#endif /* CONFIG_NET_STATISTICS && CONFIG_NET_STATISTICS_PER_INTERFACE &&
* CONFIG_NET_SHELL_DYN_CMD_COMPLETION
*/
SHELL_CREATE_STATIC_SUBCMD_SET(net_cmd_stats)
{
SHELL_CMD(all, NULL,
"Show network statistics for all network interfaces.",
cmd_net_stats_all),
SHELL_CMD(iface, STATS_IFACE_CMD,
"'net stats <index>' shows network statistics for "
"one specific network interface.",
cmd_net_stats_iface),
SHELL_SUBCMD_SET_END
};
SHELL_CREATE_STATIC_SUBCMD_SET(net_cmd_tcp)
{
SHELL_CMD(connect, NULL,
"'net tcp connect <address> <port>' connects to TCP peer.",
cmd_net_tcp_connect),
SHELL_CMD(send, NULL,
"'net tcp send <data>' sends data to peer using TCP.",
cmd_net_tcp_send),
SHELL_CMD(close, NULL,
"'net tcp close' closes TCP connection.", cmd_net_tcp_close),
SHELL_SUBCMD_SET_END
};
SHELL_CREATE_STATIC_SUBCMD_SET(net_cmd_vlan)
{
SHELL_CMD(add, NULL,
"'net vlan add <tag> <index>' adds VLAN tag to the "
"network interface.",
cmd_net_vlan_add),
SHELL_CMD(del, NULL,
"'net vlan del <tag>' deletes VLAN tag from the network "
"interface.",
cmd_net_vlan_del),
SHELL_SUBCMD_SET_END
};
SHELL_CREATE_STATIC_SUBCMD_SET(net_commands)
{
/* Alphabetically sorted. */
SHELL_CMD(allocs, NULL, "Print network memory allocations.",
cmd_net_allocs),
SHELL_CMD(app, NULL,
"Print network application API usage information.",
cmd_net_app),
SHELL_CMD(arp, &net_cmd_arp, "Print information about IPv4 ARP cache.",
cmd_net_arp),
SHELL_CMD(conn, NULL, "Print information about network connections.",
cmd_net_conn),
SHELL_CMD(dns, &net_cmd_dns, "Show how DNS is configured.",
cmd_net_dns),
SHELL_CMD(gptp, &net_cmd_gptp, "Print information about gPTP support.",
cmd_net_gptp),
SHELL_CMD(http, &net_cmd_http,
"Print information about active HTTP connections.",
cmd_net_http),
SHELL_CMD(iface, &net_cmd_iface,
"Print information about network interfaces.",
cmd_net_iface),
SHELL_CMD(ipv6, NULL,
"Print information about IPv6 specific information and "
"configuration.",
cmd_net_ipv6),
SHELL_CMD(mem, NULL, "Print information about network memory usage.",
cmd_net_mem),
SHELL_CMD(nbr, &net_cmd_nbr, "Print neighbor information.",
cmd_net_nbr),
SHELL_CMD(ping, NULL, "Ping a network host.", cmd_net_ping),
SHELL_CMD(route, NULL, "Show network route.", cmd_net_route),
SHELL_CMD(rpl, NULL, "Show RPL mesh routing status.", cmd_net_rpl),
SHELL_CMD(stacks, NULL, "Show network stacks information.",
cmd_net_stacks),
SHELL_CMD(stats, &net_cmd_stats, "Show network statistics.",
cmd_net_stats),
SHELL_CMD(tcp, &net_cmd_tcp, "Connect/send/close TCP connection.",
cmd_net_tcp),
SHELL_CMD(vlan, &net_cmd_vlan, "Show VLAN information.", cmd_net_vlan),
SHELL_SUBCMD_SET_END
};
SHELL_CMD_REGISTER(net, &net_commands, "Networking commands", NULL);
int net_shell_init(void)
{
return 0;
}