zephyr/drivers/i2c/i2c_sam_twi.c
Tony Han 9f0ca750f8 drivers: i2c: sam: fix the exception when transferring without data
The issue is found when doing shell command "i2c scan" on sama7g54-ek.
In this case no data will be transferred besides START and STOP. Data
abort would occur on accessing "msg->buf[msg->idx++]" when MMU is
enabled and "msg->idx" is very large.

Signed-off-by: Tony Han <tony.han@microchip.com>
2025-06-26 22:19:09 -05:00

404 lines
9.7 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2017 Piotr Mienkowski
* Copyright (c) 2023 Gerson Fernando Budke
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT atmel_sam_i2c_twi
/** @file
* @brief I2C bus (TWI) driver for Atmel SAM MCU family.
*
* Limitations:
* - Only I2C Master Mode with 7 bit addressing is currently supported.
* - No reentrancy support.
*/
#include <errno.h>
#include <zephyr/sys/__assert.h>
#include <stdbool.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <soc.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/atmel_sam_pmc.h>
#define LOG_LEVEL CONFIG_I2C_LOG_LEVEL
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(i2c_sam_twi);
#include "i2c-priv.h"
/** I2C bus speed [Hz] in Standard Mode */
#define BUS_SPEED_STANDARD_HZ 100000U
/** I2C bus speed [Hz] in Fast Mode */
#define BUS_SPEED_FAST_HZ 400000U
/* Maximum value of Clock Divider (CKDIV) */
#define CKDIV_MAX 7
/* Device constant configuration parameters */
struct i2c_sam_twi_dev_cfg {
Twi *regs;
void (*irq_config)(void);
uint32_t bitrate;
const struct atmel_sam_pmc_config clock_cfg;
const struct pinctrl_dev_config *pcfg;
uint8_t irq_id;
};
struct twi_msg {
/* Buffer containing data to read or write */
uint8_t *buf;
/* Length of the buffer */
uint32_t len;
/* Index of the next byte to be read/written from/to the buffer */
uint32_t idx;
/* Value of TWI_SR at the end of the message */
uint32_t twi_sr;
/* Transfer flags as defined in the i2c.h file */
uint8_t flags;
};
/* Device run time data */
struct i2c_sam_twi_dev_data {
struct k_sem lock;
struct k_sem sem;
struct twi_msg msg;
};
static int i2c_clk_set(const struct device *dev, Twi * const twi, uint32_t speed)
{
uint32_t ck_div = 0U;
uint32_t cl_div;
bool div_completed = false;
#ifdef SOC_ATMEL_SAM_MCK_FREQ_HZ
ARG_UNUSED(dev);
const uint32_t rate = SOC_ATMEL_SAM_MCK_FREQ_HZ;
#else
const struct i2c_sam_twi_dev_cfg *const config = dev->config;
uint32_t rate;
int ret;
ret = clock_control_get_rate(SAM_DT_PMC_CONTROLLER,
(clock_control_subsys_t)&config->clock_cfg, &rate);
if (ret) {
return ret;
}
#endif
/* From the datasheet "TWI Clock Waveform Generator Register"
* T_low = ( ( CLDIV × 2^CKDIV ) + 4 ) × T_MCK
*/
while (!div_completed) {
cl_div = ((rate / (speed * 2U)) - 4)
/ (1 << ck_div);
if (cl_div <= 255U) {
div_completed = true;
} else {
ck_div++;
}
}
if (ck_div > CKDIV_MAX) {
LOG_ERR("Failed to configure I2C clock");
return -EIO;
}
/* Set TWI clock duty cycle to 50% */
twi->TWI_CWGR = TWI_CWGR_CLDIV(cl_div) | TWI_CWGR_CHDIV(cl_div)
| TWI_CWGR_CKDIV(ck_div);
return 0;
}
static int i2c_sam_twi_configure(const struct device *dev, uint32_t config)
{
const struct i2c_sam_twi_dev_cfg *const dev_cfg = dev->config;
struct i2c_sam_twi_dev_data *const dev_data = dev->data;
Twi *const twi = dev_cfg->regs;
uint32_t bitrate;
int ret;
if (!(config & I2C_MODE_CONTROLLER)) {
LOG_ERR("Master Mode is not enabled");
return -EIO;
}
if (config & I2C_ADDR_10_BITS) {
LOG_ERR("I2C 10-bit addressing is currently not supported");
LOG_ERR("Please submit a patch");
return -EIO;
}
/* Configure clock */
switch (I2C_SPEED_GET(config)) {
case I2C_SPEED_STANDARD:
bitrate = BUS_SPEED_STANDARD_HZ;
break;
case I2C_SPEED_FAST:
bitrate = BUS_SPEED_FAST_HZ;
break;
default:
LOG_ERR("Unsupported I2C speed value");
return -EIO;
}
k_sem_take(&dev_data->lock, K_FOREVER);
/* Setup clock waveform */
ret = i2c_clk_set(dev, twi, bitrate);
if (ret < 0) {
goto unlock;
}
/* Disable Slave Mode */
twi->TWI_CR = TWI_CR_SVDIS;
/* Enable Master Mode */
twi->TWI_CR = TWI_CR_MSEN;
ret = 0;
unlock:
k_sem_give(&dev_data->lock);
return ret;
}
static void write_msg_start(Twi *const twi, struct twi_msg *msg, uint8_t daddr)
{
/* Set slave address and number of internal address bytes. */
twi->TWI_MMR = TWI_MMR_DADR(daddr);
/* Write first data byte on I2C bus */
twi->TWI_THR = msg->buf[msg->idx++];
/* Enable Transmit Ready and Transmission Completed interrupts */
twi->TWI_IER = TWI_IER_TXRDY | TWI_IER_TXCOMP | TWI_IER_NACK;
}
static void read_msg_start(Twi *const twi, struct twi_msg *msg, uint8_t daddr)
{
uint32_t twi_cr_stop;
/* Set slave address and number of internal address bytes */
twi->TWI_MMR = TWI_MMR_MREAD | TWI_MMR_DADR(daddr);
/* In single data byte read the START and STOP must both be set */
twi_cr_stop = (msg->len == 1U) ? TWI_CR_STOP : 0;
/* Start the transfer by sending START condition */
twi->TWI_CR = TWI_CR_START | twi_cr_stop;
/* Enable Receive Ready and Transmission Completed interrupts */
twi->TWI_IER = TWI_IER_RXRDY | TWI_IER_TXCOMP | TWI_IER_NACK;
}
static int i2c_sam_twi_transfer(const struct device *dev,
struct i2c_msg *msgs,
uint8_t num_msgs, uint16_t addr)
{
const struct i2c_sam_twi_dev_cfg *const dev_cfg = dev->config;
struct i2c_sam_twi_dev_data *const dev_data = dev->data;
Twi *const twi = dev_cfg->regs;
int ret;
__ASSERT_NO_MSG(msgs);
if (!num_msgs) {
return 0;
}
k_sem_take(&dev_data->lock, K_FOREVER);
/* Clear pending interrupts, such as NACK. */
(void)twi->TWI_SR;
/* Set number of internal address bytes to 0, not used. */
twi->TWI_IADR = 0;
for (; num_msgs > 0; num_msgs--, msgs++) {
dev_data->msg.buf = msgs->buf;
dev_data->msg.len = msgs->len;
dev_data->msg.idx = 0U;
dev_data->msg.twi_sr = 0U;
dev_data->msg.flags = msgs->flags;
/*
* REMARK: Dirty workaround:
*
* The controller does not have a documented, generic way to
* issue RESTART when changing transfer direction as master.
* Send a stop condition in such a case.
*/
if (num_msgs > 1) {
if ((msgs[0].flags & I2C_MSG_RW_MASK) !=
(msgs[1].flags & I2C_MSG_RW_MASK)) {
dev_data->msg.flags |= I2C_MSG_STOP;
}
}
if ((msgs->flags & I2C_MSG_RW_MASK) == I2C_MSG_READ) {
read_msg_start(twi, &dev_data->msg, addr);
} else {
write_msg_start(twi, &dev_data->msg, addr);
}
/* Wait for the transfer to complete */
k_sem_take(&dev_data->sem, K_FOREVER);
if (dev_data->msg.twi_sr > 0) {
/* Something went wrong */
ret = -EIO;
goto unlock;
}
}
ret = 0;
unlock:
k_sem_give(&dev_data->lock);
return ret;
}
static void i2c_sam_twi_isr(const struct device *dev)
{
const struct i2c_sam_twi_dev_cfg *const dev_cfg = dev->config;
struct i2c_sam_twi_dev_data *const dev_data = dev->data;
Twi *const twi = dev_cfg->regs;
struct twi_msg *msg = &dev_data->msg;
uint32_t isr_status;
/* Retrieve interrupt status */
isr_status = twi->TWI_SR & twi->TWI_IMR;
/* Not Acknowledged */
if (isr_status & TWI_SR_NACK) {
msg->twi_sr = isr_status;
goto tx_comp;
}
/* Byte received */
if (isr_status & TWI_SR_RXRDY) {
msg->buf[msg->idx++] = twi->TWI_RHR;
if (msg->idx == msg->len - 1U) {
/* Send a STOP condition on the TWI */
twi->TWI_CR = TWI_CR_STOP;
}
}
/* Byte sent */
if (isr_status & TWI_SR_TXRDY) {
if (msg->idx == msg->len || msg->len == 0) {
if (msg->flags & I2C_MSG_STOP) {
/* Send a STOP condition on the TWI */
twi->TWI_CR = TWI_CR_STOP;
/* Disable Transmit Ready interrupt */
twi->TWI_IDR = TWI_IDR_TXRDY;
} else {
/* Transmission completed */
goto tx_comp;
}
} else {
twi->TWI_THR = msg->buf[msg->idx++];
}
}
/* Transmission completed */
if (isr_status & TWI_SR_TXCOMP) {
goto tx_comp;
}
return;
tx_comp:
/* Disable all enabled interrupts */
twi->TWI_IDR = twi->TWI_IMR;
/* We are done */
k_sem_give(&dev_data->sem);
}
static int i2c_sam_twi_initialize(const struct device *dev)
{
const struct i2c_sam_twi_dev_cfg *const dev_cfg = dev->config;
struct i2c_sam_twi_dev_data *const dev_data = dev->data;
Twi *const twi = dev_cfg->regs;
uint32_t bitrate_cfg;
int ret;
/* Configure interrupts */
dev_cfg->irq_config();
/* Initialize semaphores */
k_sem_init(&dev_data->lock, 1, 1);
k_sem_init(&dev_data->sem, 0, 1);
/* Connect pins to the peripheral */
ret = pinctrl_apply_state(dev_cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
/* Enable TWI clock in PMC */
(void)clock_control_on(SAM_DT_PMC_CONTROLLER,
(clock_control_subsys_t)&dev_cfg->clock_cfg);
/* Reset TWI module */
twi->TWI_CR = TWI_CR_SWRST;
bitrate_cfg = i2c_map_dt_bitrate(dev_cfg->bitrate);
ret = i2c_sam_twi_configure(dev, I2C_MODE_CONTROLLER | bitrate_cfg);
if (ret < 0) {
LOG_ERR("Failed to initialize %s device", dev->name);
return ret;
}
/* Enable module's IRQ */
irq_enable(dev_cfg->irq_id);
LOG_INF("Device %s initialized", dev->name);
return 0;
}
static DEVICE_API(i2c, i2c_sam_twi_driver_api) = {
.configure = i2c_sam_twi_configure,
.transfer = i2c_sam_twi_transfer,
#ifdef CONFIG_I2C_RTIO
.iodev_submit = i2c_iodev_submit_fallback,
#endif
};
#define I2C_TWI_SAM_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
static void i2c##n##_sam_irq_config(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
i2c_sam_twi_isr, \
DEVICE_DT_INST_GET(n), 0); \
} \
\
static const struct i2c_sam_twi_dev_cfg i2c##n##_sam_config = { \
.regs = (Twi *)DT_INST_REG_ADDR(n), \
.irq_config = i2c##n##_sam_irq_config, \
.clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(n), \
.irq_id = DT_INST_IRQN(n), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.bitrate = DT_INST_PROP(n, clock_frequency), \
}; \
\
static struct i2c_sam_twi_dev_data i2c##n##_sam_data; \
\
I2C_DEVICE_DT_INST_DEFINE(n, i2c_sam_twi_initialize, \
NULL, \
&i2c##n##_sam_data, &i2c##n##_sam_config, \
POST_KERNEL, CONFIG_I2C_INIT_PRIORITY, \
&i2c_sam_twi_driver_api);
DT_INST_FOREACH_STATUS_OKAY(I2C_TWI_SAM_INIT)