Kernel timeouts have always been a 32 bit integer despite the existence of generation macros, and existing code has been inconsistent about using them. Upcoming commits are going to make the timeout arguments opaque, so fix things up to be rigorously correct. Changes include: + Adding a K_TIMEOUT_EQ() macro for code that needs to compare timeout values for equality (e.g. with K_FOREVER or K_NO_WAIT). + Adding a k_msleep() synonym for k_sleep() which can continue to take integral arguments as k_sleep() moves away to timeout arguments. + Pervasively using the K_MSEC(), K_SECONDS(), et. al. macros to generate timeout arguments. + Removing the usage of K_NO_WAIT as the final argument to K_THREAD_DEFINE(). This is just a count of milliseconds and we need to use a zero. This patch include no logic changes and should not affect generated code at all. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
317 lines
7.5 KiB
C
317 lines
7.5 KiB
C
/*
|
|
* Copyright (c) 2018 Nordic Semiconductor ASA
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <zephyr.h>
|
|
#include <string.h>
|
|
#include <sys/printk.h>
|
|
#include "sample_instance.h"
|
|
#include "sample_module.h"
|
|
#include "ext_log_system.h"
|
|
#include "ext_log_system_adapter.h"
|
|
#include <logging/log_ctrl.h>
|
|
#include <app_memory/app_memdomain.h>
|
|
|
|
#include <logging/log.h>
|
|
LOG_MODULE_REGISTER(main);
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
K_APPMEM_PARTITION_DEFINE(app_part);
|
|
static struct k_mem_domain app_domain;
|
|
static struct k_mem_partition *app_parts[] = {
|
|
#ifdef Z_LIBC_PARTITION_EXISTS
|
|
/* C library globals, stack canary storage, etc */
|
|
&z_libc_partition,
|
|
#endif
|
|
&app_part
|
|
};
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
/* size of stack area used by each thread */
|
|
#define STACKSIZE (1024 + CONFIG_TEST_EXTRA_STACKSIZE)
|
|
|
|
extern void sample_module_func(void);
|
|
|
|
#define INST1_NAME STRINGIFY(SAMPLE_INSTANCE_NAME.inst1)
|
|
SAMPLE_INSTANCE_DEFINE(app_part, inst1);
|
|
|
|
#define INST2_NAME STRINGIFY(SAMPLE_INSTANCE_NAME.inst2)
|
|
SAMPLE_INSTANCE_DEFINE(app_part, inst2);
|
|
|
|
#if !defined(NRF_RTC1) && defined(CONFIG_SOC_FAMILY_NRF)
|
|
#include <soc.h>
|
|
#endif
|
|
|
|
static u32_t timestamp_get(void)
|
|
{
|
|
#ifdef CONFIG_SOC_FAMILY_NRF
|
|
return NRF_RTC1->COUNTER;
|
|
#else
|
|
return k_cycle_get_32();
|
|
#endif
|
|
}
|
|
|
|
static u32_t timestamp_freq(void)
|
|
{
|
|
#ifdef CONFIG_SOC_FAMILY_NRF
|
|
return 32768 / (NRF_RTC1->PRESCALER + 1);
|
|
#else
|
|
return sys_clock_hw_cycles_per_sec();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Function for finding source ID based on source name.
|
|
*
|
|
* @param name Source name
|
|
*
|
|
* @return Source ID.
|
|
*/
|
|
static int log_source_id_get(const char *name)
|
|
{
|
|
|
|
for (int i = 0; i < log_src_cnt_get(CONFIG_LOG_DOMAIN_ID); i++) {
|
|
if (strcmp(log_source_name_get(CONFIG_LOG_DOMAIN_ID, i), name)
|
|
== 0) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* @brief Function demonstrates module level filtering.
|
|
*
|
|
* Sample module API is called then logging for this module is disabled and
|
|
* function is called again. It is expected that only logs generated by the
|
|
* first call will be processed by the output.
|
|
*/
|
|
static void module_logging_showcase(void)
|
|
{
|
|
printk("Module logging showcase.\n");
|
|
|
|
sample_module_func();
|
|
inline_func();
|
|
|
|
if (IS_ENABLED(CONFIG_LOG_RUNTIME_FILTERING)) {
|
|
printk("Disabling logging in the %s module\n",
|
|
sample_module_name_get());
|
|
|
|
log_filter_set(NULL, 0,
|
|
log_source_id_get(sample_module_name_get()),
|
|
LOG_LEVEL_NONE);
|
|
|
|
sample_module_func();
|
|
|
|
printk("Function called again but with logging disabled.\n");
|
|
|
|
} else {
|
|
printk("%s option disabled.\n",
|
|
STRINGIFY(CONFIG_LOG_RUNTIME_FILTERING));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Function demonstrates instance level filtering.
|
|
*
|
|
* Sample multi-instance module API on two instances is called then logging
|
|
* level for one instance is reduced and function is called again on two
|
|
* instances. It is expected that one instance will generate less logs.
|
|
*/
|
|
static void instance_logging_showcase(void)
|
|
{
|
|
printk("Instance level logging showcase.\n");
|
|
|
|
sample_instance_inline_call(&inst1);
|
|
sample_instance_call(&inst1);
|
|
sample_instance_inline_call(&inst2);
|
|
sample_instance_call(&inst2);
|
|
|
|
if (IS_ENABLED(CONFIG_LOG_RUNTIME_FILTERING)) {
|
|
printk("Changing filter to warning on %s instance.\n",
|
|
INST1_NAME);
|
|
|
|
log_filter_set(NULL, 0,
|
|
log_source_id_get(INST1_NAME), LOG_LEVEL_WRN);
|
|
|
|
sample_instance_inline_call(&inst1);
|
|
sample_instance_call(&inst1);
|
|
sample_instance_inline_call(&inst2);
|
|
sample_instance_call(&inst2);
|
|
|
|
printk("Disabling logging on both instances.\n");
|
|
|
|
log_filter_set(NULL, 0,
|
|
log_source_id_get(INST1_NAME),
|
|
LOG_LEVEL_NONE);
|
|
|
|
log_filter_set(NULL, 0,
|
|
log_source_id_get(INST2_NAME),
|
|
LOG_LEVEL_NONE);
|
|
|
|
sample_instance_inline_call(&inst1);
|
|
sample_instance_call(&inst1);
|
|
sample_instance_inline_call(&inst2);
|
|
sample_instance_call(&inst2);
|
|
|
|
printk("Function call on both instances with logging disabled.\n");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Function demonstrates supported severity logging level.
|
|
*/
|
|
static void severity_levels_showcase(void)
|
|
{
|
|
printk("Severity levels showcase.\n");
|
|
|
|
LOG_ERR("Error message example.");
|
|
LOG_WRN("Warning message example.");
|
|
LOG_INF("Info message example.");
|
|
LOG_DBG("Debug message example.");
|
|
}
|
|
|
|
/**
|
|
* @brief Function demonstrates how transient strings can be logged.
|
|
*
|
|
* Logger ensures that allocated buffers are freed when log message is
|
|
* processed.
|
|
*/
|
|
static void log_strdup_showcase(void)
|
|
{
|
|
char transient_str[] = "transient_string";
|
|
|
|
printk("String logging showcase.\n");
|
|
|
|
LOG_INF("Logging transient string:%s", log_strdup(transient_str));
|
|
|
|
/* Overwrite transient string to show that the logger has a copy. */
|
|
transient_str[0] = '\0';
|
|
}
|
|
|
|
/**
|
|
* @brief Function demonstrates how fast data can be logged.
|
|
*
|
|
* Messages are logged and counted in a loop for 2 ticks (same clock source as
|
|
* the one used for logging timestamp). Based on that and known clock frequency,
|
|
* logging bandwidth is calculated.
|
|
*/
|
|
static void performance_showcase(void)
|
|
{
|
|
volatile u32_t current_timestamp;
|
|
volatile u32_t start_timestamp;
|
|
u32_t per_sec;
|
|
u32_t cnt = 0U;
|
|
u32_t window = 2U;
|
|
|
|
printk("Logging performance showcase.\n");
|
|
|
|
start_timestamp = timestamp_get();
|
|
|
|
while (start_timestamp == timestamp_get()) {
|
|
#if (CONFIG_ARCH_POSIX)
|
|
k_busy_wait(100);
|
|
#endif
|
|
}
|
|
|
|
start_timestamp = timestamp_get();
|
|
|
|
do {
|
|
LOG_INF("performance test - log message %d", cnt);
|
|
cnt++;
|
|
current_timestamp = timestamp_get();
|
|
#if (CONFIG_ARCH_POSIX)
|
|
k_busy_wait(100);
|
|
#endif
|
|
} while (current_timestamp < (start_timestamp + window));
|
|
|
|
per_sec = (cnt * timestamp_freq()) / window;
|
|
printk("Estimated logging capabilities: %d messages/second\n", per_sec);
|
|
}
|
|
|
|
static void external_log_system_showcase(void)
|
|
{
|
|
printk("Logs from external logging system showcase.\n");
|
|
|
|
ext_log_system_log_adapt();
|
|
|
|
ext_log_system_foo();
|
|
}
|
|
|
|
static void wait_on_log_flushed(void)
|
|
{
|
|
while (log_buffered_cnt()) {
|
|
k_sleep(K_MSEC(5));
|
|
}
|
|
}
|
|
|
|
static void log_demo_thread(void *p1, void *p2, void *p3)
|
|
{
|
|
bool usermode = _is_user_context();
|
|
|
|
k_sleep(K_MSEC(100));
|
|
|
|
printk("\n\t---=< RUNNING LOGGER DEMO FROM %s THREAD >=---\n\n",
|
|
(usermode) ? "USER" : "KERNEL");
|
|
|
|
module_logging_showcase();
|
|
|
|
instance_logging_showcase();
|
|
|
|
/* Re-enabling filters before processing.
|
|
* Note: Same filters are used to for gathering logs and processing.
|
|
*/
|
|
log_filter_set(NULL, CONFIG_LOG_DOMAIN_ID,
|
|
log_source_id_get(sample_module_name_get()),
|
|
CONFIG_LOG_DEFAULT_LEVEL);
|
|
|
|
log_filter_set(NULL, CONFIG_LOG_DOMAIN_ID,
|
|
log_source_id_get(INST1_NAME),
|
|
CONFIG_LOG_DEFAULT_LEVEL);
|
|
|
|
log_filter_set(NULL, CONFIG_LOG_DOMAIN_ID,
|
|
log_source_id_get(INST2_NAME),
|
|
CONFIG_LOG_DEFAULT_LEVEL);
|
|
|
|
wait_on_log_flushed();
|
|
|
|
log_strdup_showcase();
|
|
|
|
severity_levels_showcase();
|
|
|
|
wait_on_log_flushed();
|
|
|
|
if (!usermode) {
|
|
/*
|
|
* Logger performance in user mode cannot be demonstrated
|
|
* as precise timing API is accessible only from the kernel.
|
|
*/
|
|
performance_showcase();
|
|
wait_on_log_flushed();
|
|
|
|
}
|
|
|
|
external_log_system_showcase();
|
|
wait_on_log_flushed();
|
|
}
|
|
|
|
static void log_demo_supervisor(void *p1, void *p2, void *p3)
|
|
{
|
|
/* Timestamp function could be set only from kernel thread. */
|
|
(void)log_set_timestamp_func(timestamp_get, timestamp_freq());
|
|
|
|
log_demo_thread(p1, p2, p3);
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
k_mem_domain_init(&app_domain, ARRAY_SIZE(app_parts), app_parts);
|
|
k_mem_domain_add_thread(&app_domain, k_current_get());
|
|
k_thread_user_mode_enter(log_demo_thread, p1, p2, p3);
|
|
#endif
|
|
}
|
|
|
|
K_THREAD_DEFINE(log_demo_thread_id, STACKSIZE, log_demo_supervisor,
|
|
NULL, NULL, NULL,
|
|
K_LOWEST_APPLICATION_THREAD_PRIO, 0, 1);
|