zephyr/arch/arm/core/aarch32/thread.c
Stephanos Ioannidis b63a028fbc arch: arm: aarch32: Rework non-Cortex-M context preservation
The current context preservation implementation saves the spsr and
lr_irq registers, which contain the cpsr and pc register values of the
interrupted context, in the thread callee-saved block and this prevents
nesting of interrupts because these values are required to be part of
the exception stack frame to preserve the nested interrupt context.

This commit reworks the AArch32 non-Cortex-M context preservation
implementation to save the spsr and lr_irq registers in the exception
stack frame to allow preservation of the nested interrupt context as
well as the interrupted thread context.

Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
2020-04-02 09:22:38 +02:00

464 lines
14 KiB
C

/*
* Copyright (c) 2013-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief New thread creation for ARM Cortex-M and Cortex-R
*
* Core thread related primitives for the ARM Cortex-M and Cortex-R
* processor architecture.
*/
#include <kernel.h>
#include <ksched.h>
#include <wait_q.h>
/* An initial context, to be "restored" by z_arm_pendsv(), is put at the other
* end of the stack, and thus reusable by the stack when not needed anymore.
*
* The initial context is an exception stack frame (ESF) since exiting the
* PendSV exception will want to pop an ESF. Interestingly, even if the lsb of
* an instruction address to jump to must always be set since the CPU always
* runs in thumb mode, the ESF expects the real address of the instruction,
* with the lsb *not* set (instructions are always aligned on 16 bit
* halfwords). Since the compiler automatically sets the lsb of function
* addresses, we have to unset it manually before storing it in the 'pc' field
* of the ESF.
*/
void arch_new_thread(struct k_thread *thread, k_thread_stack_t *stack,
size_t stackSize, k_thread_entry_t pEntry,
void *parameter1, void *parameter2, void *parameter3,
int priority, unsigned int options)
{
char *pStackMem = Z_THREAD_STACK_BUFFER(stack);
char *stackEnd;
/* Offset between the top of stack and the high end of stack area. */
u32_t top_of_stack_offset = 0U;
Z_ASSERT_VALID_PRIO(priority, pEntry);
#if defined(CONFIG_USERSPACE)
/* Truncate the stack size to align with the MPU region granularity.
* This is done proactively to account for the case when the thread
* switches to user mode (thus, its stack area will need to be MPU-
* programmed to be assigned unprivileged RW access permission).
*/
stackSize &= ~(CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE - 1);
#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
/* Reserve space on top of stack for local data. */
u32_t p_local_data = STACK_ROUND_DOWN(pStackMem + stackSize
- sizeof(*thread->userspace_local_data));
thread->userspace_local_data =
(struct _thread_userspace_local_data *)(p_local_data);
/* Top of actual stack must be moved below the user local data. */
top_of_stack_offset = (u32_t)
(pStackMem + stackSize - ((char *)p_local_data));
#endif /* CONFIG_THREAD_USERSPACE_LOCAL_DATA */
#endif /* CONFIG_USERSPACE */
#if defined(CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT) \
&& defined(CONFIG_USERSPACE)
/* This is required to work-around the case where the thread
* is created without using K_THREAD_STACK_SIZEOF() macro in
* k_thread_create(). If K_THREAD_STACK_SIZEOF() is used, the
* Guard size has already been take out of stackSize.
*/
stackSize -= MPU_GUARD_ALIGN_AND_SIZE;
#endif
#if defined(CONFIG_FLOAT) && defined(CONFIG_FP_SHARING) \
&& defined(CONFIG_MPU_STACK_GUARD)
/* For a thread which intends to use the FP services, it is required to
* allocate a wider MPU guard region, to always successfully detect an
* overflow of the stack.
*
* Note that the wider MPU regions requires re-adjusting the stack_info
* .start and .size.
*
*/
if ((options & K_FP_REGS) != 0) {
pStackMem += MPU_GUARD_ALIGN_AND_SIZE_FLOAT
- MPU_GUARD_ALIGN_AND_SIZE;
stackSize -= MPU_GUARD_ALIGN_AND_SIZE_FLOAT
- MPU_GUARD_ALIGN_AND_SIZE;
}
#endif
stackEnd = pStackMem + stackSize;
struct __esf *pInitCtx;
z_new_thread_init(thread, pStackMem, stackSize, priority,
options);
/* Carve the thread entry struct from the "base" of the stack
*
* The initial carved stack frame only needs to contain the basic
* stack frame (state context), because no FP operations have been
* performed yet for this thread.
*/
pInitCtx = (struct __esf *)(STACK_ROUND_DOWN(stackEnd -
(char *)top_of_stack_offset - sizeof(struct __basic_sf)));
#if defined(CONFIG_USERSPACE)
if ((options & K_USER) != 0) {
pInitCtx->basic.pc = (u32_t)arch_user_mode_enter;
} else {
pInitCtx->basic.pc = (u32_t)z_thread_entry;
}
#else
pInitCtx->basic.pc = (u32_t)z_thread_entry;
#endif
#if defined(CONFIG_CPU_CORTEX_M)
/* force ARM mode by clearing LSB of address */
pInitCtx->basic.pc &= 0xfffffffe;
#endif
pInitCtx->basic.a1 = (u32_t)pEntry;
pInitCtx->basic.a2 = (u32_t)parameter1;
pInitCtx->basic.a3 = (u32_t)parameter2;
pInitCtx->basic.a4 = (u32_t)parameter3;
#if defined(CONFIG_CPU_CORTEX_M)
pInitCtx->basic.xpsr =
0x01000000UL; /* clear all, thumb bit is 1, even if RO */
#else
pInitCtx->basic.xpsr = A_BIT | MODE_SYS;
#if defined(CONFIG_COMPILER_ISA_THUMB2)
pInitCtx->basic.xpsr |= T_BIT;
#endif /* CONFIG_COMPILER_ISA_THUMB2 */
#endif /* CONFIG_CPU_CORTEX_M */
thread->callee_saved.psp = (u32_t)pInitCtx;
thread->arch.basepri = 0;
#if defined(CONFIG_USERSPACE) || defined(CONFIG_FP_SHARING)
thread->arch.mode = 0;
#if defined(CONFIG_USERSPACE)
thread->arch.priv_stack_start = 0;
#endif
#endif
/* swap_return_value can contain garbage */
/*
* initial values in all other registers/thread entries are
* irrelevant.
*/
}
#ifdef CONFIG_USERSPACE
FUNC_NORETURN void arch_user_mode_enter(k_thread_entry_t user_entry,
void *p1, void *p2, void *p3)
{
/* Set up privileged stack before entering user mode */
_current->arch.priv_stack_start =
(u32_t)z_priv_stack_find(_current->stack_obj);
#if defined(CONFIG_MPU_STACK_GUARD)
/* Stack guard area reserved at the bottom of the thread's
* privileged stack. Adjust the available (writable) stack
* buffer area accordingly.
*/
#if defined(CONFIG_FLOAT) && defined(CONFIG_FP_SHARING)
_current->arch.priv_stack_start +=
(_current->base.user_options & K_FP_REGS) ?
MPU_GUARD_ALIGN_AND_SIZE_FLOAT : MPU_GUARD_ALIGN_AND_SIZE;
#else
_current->arch.priv_stack_start += MPU_GUARD_ALIGN_AND_SIZE;
#endif /* CONFIG_FLOAT && CONFIG_FP_SHARING */
#endif /* CONFIG_MPU_STACK_GUARD */
z_arm_userspace_enter(user_entry, p1, p2, p3,
(u32_t)_current->stack_info.start,
_current->stack_info.size);
CODE_UNREACHABLE;
}
#endif
#if defined(CONFIG_BUILTIN_STACK_GUARD)
/*
* @brief Configure ARM built-in stack guard
*
* This function configures per thread stack guards by reprogramming
* the built-in Process Stack Pointer Limit Register (PSPLIM).
* The functionality is meant to be used during context switch.
*
* @param thread thread info data structure.
*/
void configure_builtin_stack_guard(struct k_thread *thread)
{
#if defined(CONFIG_USERSPACE)
if ((thread->arch.mode & CONTROL_nPRIV_Msk) != 0) {
/* Only configure stack limit for threads in privileged mode
* (i.e supervisor threads or user threads doing system call).
* User threads executing in user mode do not require a stack
* limit protection.
*/
__set_PSPLIM(0);
return;
}
/* Only configure PSPLIM to guard the privileged stack area, if
* the thread is currently using it, otherwise guard the default
* thread stack. Note that the conditional check relies on the
* thread privileged stack being allocated in higher memory area
* than the default thread stack (ensured by design).
*/
u32_t guard_start =
((thread->arch.priv_stack_start) &&
(__get_PSP() >= thread->arch.priv_stack_start)) ?
(u32_t)thread->arch.priv_stack_start :
(u32_t)thread->stack_obj;
__ASSERT(thread->stack_info.start == ((u32_t)thread->stack_obj),
"stack_info.start does not point to the start of the"
"thread allocated area.");
#else
u32_t guard_start = thread->stack_info.start;
#endif
#if defined(CONFIG_CPU_CORTEX_M_HAS_SPLIM)
__set_PSPLIM(guard_start);
#else
#error "Built-in PSP limit checks not supported by HW"
#endif
}
#endif /* CONFIG_BUILTIN_STACK_GUARD */
#if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE)
#define IS_MPU_GUARD_VIOLATION(guard_start, guard_len, fault_addr, stack_ptr) \
((fault_addr == -EINVAL) ? \
((fault_addr >= guard_start) && \
(fault_addr < (guard_start + guard_len)) && \
(stack_ptr < (guard_start + guard_len))) \
: \
(stack_ptr < (guard_start + guard_len)))
/**
* @brief Assess occurrence of current thread's stack corruption
*
* This function performs an assessment whether a memory fault (on a
* given memory address) is the result of stack memory corruption of
* the current thread.
*
* Thread stack corruption for supervisor threads or user threads in
* privilege mode (when User Space is supported) is reported upon an
* attempt to access the stack guard area (if MPU Stack Guard feature
* is supported). Additionally the current PSP (process stack pointer)
* must be pointing inside or below the guard area.
*
* Thread stack corruption for user threads in user mode is reported,
* if the current PSP is pointing below the start of the current
* thread's stack.
*
* Notes:
* - we assume a fully descending stack,
* - we assume a stacking error has occurred,
* - the function shall be called when handling MemManage and Bus fault,
* and only if a Stacking error has been reported.
*
* If stack corruption is detected, the function returns the lowest
* allowed address where the Stack Pointer can safely point to, to
* prevent from errors when un-stacking the corrupted stack frame
* upon exception return.
*
* @param fault_addr memory address on which memory access violation
* has been reported. It can be invalid (-EINVAL),
* if only Stacking error has been reported.
* @param psp current address the PSP points to
*
* @return The lowest allowed stack frame pointer, if error is a
* thread stack corruption, otherwise return 0.
*/
u32_t z_check_thread_stack_fail(const u32_t fault_addr, const u32_t psp)
{
const struct k_thread *thread = _current;
if (!thread) {
return 0;
}
#if defined(CONFIG_FLOAT) && defined(CONFIG_FP_SHARING)
u32_t guard_len = (thread->base.user_options & K_FP_REGS) ?
MPU_GUARD_ALIGN_AND_SIZE_FLOAT : MPU_GUARD_ALIGN_AND_SIZE;
#else
u32_t guard_len = MPU_GUARD_ALIGN_AND_SIZE;
#endif /* CONFIG_FLOAT && CONFIG_FP_SHARING */
#if defined(CONFIG_USERSPACE)
if (thread->arch.priv_stack_start) {
/* User thread */
if ((__get_CONTROL() & CONTROL_nPRIV_Msk) == 0) {
/* User thread in privilege mode */
if (IS_MPU_GUARD_VIOLATION(
thread->arch.priv_stack_start - guard_len,
guard_len,
fault_addr, psp)) {
/* Thread's privilege stack corruption */
return thread->arch.priv_stack_start;
}
} else {
if (psp < (u32_t)thread->stack_obj) {
/* Thread's user stack corruption */
return (u32_t)thread->stack_obj;
}
}
} else {
/* Supervisor thread */
if (IS_MPU_GUARD_VIOLATION(thread->stack_info.start -
guard_len,
guard_len,
fault_addr, psp)) {
/* Supervisor thread stack corruption */
return thread->stack_info.start;
}
}
#else /* CONFIG_USERSPACE */
if (IS_MPU_GUARD_VIOLATION(thread->stack_info.start - guard_len,
guard_len,
fault_addr, psp)) {
/* Thread stack corruption */
return thread->stack_info.start;
}
#endif /* CONFIG_USERSPACE */
return 0;
}
#endif /* CONFIG_MPU_STACK_GUARD || CONFIG_USERSPACE */
#if defined(CONFIG_FLOAT) && defined(CONFIG_FP_SHARING)
int arch_float_disable(struct k_thread *thread)
{
if (thread != _current) {
return -EINVAL;
}
if (arch_is_in_isr()) {
return -EINVAL;
}
/* Disable all floating point capabilities for the thread */
/* K_FP_REG flag is used in SWAP and stack check fail. Locking
* interrupts here prevents a possible context-switch or MPU
* fault to take an outdated thread user_options flag into
* account.
*/
int key = arch_irq_lock();
thread->base.user_options &= ~K_FP_REGS;
__set_CONTROL(__get_CONTROL() & (~CONTROL_FPCA_Msk));
/* No need to add an ISB barrier after setting the CONTROL
* register; arch_irq_unlock() already adds one.
*/
arch_irq_unlock(key);
return 0;
}
#endif /* CONFIG_FLOAT && CONFIG_FP_SHARING */
void arch_switch_to_main_thread(struct k_thread *main_thread,
k_thread_stack_t *main_stack,
size_t main_stack_size,
k_thread_entry_t _main)
{
#if defined(CONFIG_FLOAT)
/* Initialize the Floating Point Status and Control Register when in
* Unshared FP Registers mode (In Shared FP Registers mode, FPSCR is
* initialized at thread creation for threads that make use of the FP).
*/
__set_FPSCR(0);
#if defined(CONFIG_FP_SHARING)
/* In Sharing mode clearing FPSCR may set the CONTROL.FPCA flag. */
__set_CONTROL(__get_CONTROL() & (~(CONTROL_FPCA_Msk)));
__ISB();
#endif /* CONFIG_FP_SHARING */
#endif /* CONFIG_FLOAT */
#ifdef CONFIG_ARM_MPU
/* Configure static memory map. This will program MPU regions,
* to set up access permissions for fixed memory sections, such
* as Application Memory or No-Cacheable SRAM area.
*
* This function is invoked once, upon system initialization.
*/
z_arm_configure_static_mpu_regions();
#endif
/* get high address of the stack, i.e. its start (stack grows down) */
char *start_of_main_stack;
start_of_main_stack =
Z_THREAD_STACK_BUFFER(main_stack) + main_stack_size;
start_of_main_stack = (char *)STACK_ROUND_DOWN(start_of_main_stack);
_current = main_thread;
#ifdef CONFIG_TRACING
sys_trace_thread_switched_in();
#endif
/* the ready queue cache already contains the main thread */
#if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE)
/*
* If stack protection is enabled, make sure to set it
* before jumping to thread entry function
*/
z_arm_configure_dynamic_mpu_regions(main_thread);
#endif
#if defined(CONFIG_BUILTIN_STACK_GUARD)
/* Set PSPLIM register for built-in stack guarding of main thread. */
#if defined(CONFIG_CPU_CORTEX_M_HAS_SPLIM)
__set_PSPLIM((u32_t)main_stack);
#else
#error "Built-in PSP limit checks not supported by HW"
#endif
#endif /* CONFIG_BUILTIN_STACK_GUARD */
/*
* Set PSP to the highest address of the main stack
* before enabling interrupts and jumping to main.
*/
__asm__ volatile (
"mov r0, %0\n\t" /* Store _main in R0 */
#if defined(CONFIG_CPU_CORTEX_M)
"msr PSP, %1\n\t" /* __set_PSP(start_of_main_stack) */
#endif
"movs r1, #0\n\t"
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE) \
|| defined(CONFIG_ARMV7_R)
"cpsie i\n\t" /* __enable_irq() */
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
"cpsie if\n\t" /* __enable_irq(); __enable_fault_irq() */
"msr BASEPRI, r1\n\t" /* __set_BASEPRI(0) */
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
"isb\n\t"
"movs r2, #0\n\t"
"movs r3, #0\n\t"
"bl z_thread_entry\n\t" /* z_thread_entry(_main, 0, 0, 0); */
:
: "r" (_main), "r" (start_of_main_stack)
: "r0" /* not to be overwritten by msr PSP, %1 */
);
CODE_UNREACHABLE;
}