zephyr/drivers/flash/spi_nor.c
Robert Hancock 3a2639a9de drivers: flash: spi_nor: Add fast read support
Most SPI NOR flash devices support a "fast read" command which uses
dummy bits between the address and the start of the data transfer. In
many cases, the maximum SPI clock speed of the device is lower for the
regular read command due to the limited time between the address and
data phases, so using the fast read command will remove this restriction
and allow for faster transfers.

Add a device tree flag to indicate that fast reads should be used for
the device.

Signed-off-by: Robert Hancock <robert.hancock@calian.com>
2025-05-13 12:09:06 +02:00

1929 lines
52 KiB
C

/*
* Copyright (c) 2018 Savoir-Faire Linux.
* Copyright (c) 2020 Peter Bigot Consulting, LLC
* Copyright (c) 2023 Intercreate, Inc.
*
* This driver is heavily inspired from the spi_flash_w25qxxdv.c SPI NOR driver.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT jedec_spi_nor
#include <errno.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/init.h>
#include <string.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys_clock.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
#include "spi_nor.h"
#include "jesd216.h"
#include "flash_priv.h"
LOG_MODULE_REGISTER(spi_nor, CONFIG_FLASH_LOG_LEVEL);
/* Device Power Management Notes
*
* These flash devices have several modes during operation:
* * When CSn is asserted (during a SPI operation) the device is
* active.
* * When CSn is deasserted the device enters a standby mode.
* * Some devices support a Deep Power-Down mode which reduces current
* to as little as 0.1% of standby.
*
* When mapped to the Zephyr Device Power Management states:
* * PM_DEVICE_STATE_ACTIVE covers both active and standby modes;
* * PM_DEVICE_STATE_SUSPENDED corresponds to deep-power-down mode;
* * PM_DEVICE_STATE_OFF covers the powered off state;
*/
#define SPI_NOR_MAX_ADDR_WIDTH 4
#define SPI_NOR_3B_ADDR_MAX 0xFFFFFF
#define ANY_INST_HAS_MXICY_MX25R_POWER_MODE DT_ANY_INST_HAS_PROP_STATUS_OKAY(mxicy_mx25r_power_mode)
#define ANY_INST_HAS_DPD DT_ANY_INST_HAS_BOOL_STATUS_OKAY(has_dpd)
#define ANY_INST_HAS_T_EXIT_DPD DT_ANY_INST_HAS_PROP_STATUS_OKAY(t_exit_dpd)
#define ANY_INST_HAS_DPD_WAKEUP_SEQUENCE DT_ANY_INST_HAS_PROP_STATUS_OKAY(dpd_wakeup_sequence)
#define ANY_INST_HAS_RESET_GPIOS DT_ANY_INST_HAS_PROP_STATUS_OKAY(reset_gpios)
#define ANY_INST_HAS_WP_GPIOS DT_ANY_INST_HAS_PROP_STATUS_OKAY(wp_gpios)
#define ANY_INST_HAS_HOLD_GPIOS DT_ANY_INST_HAS_PROP_STATUS_OKAY(hold_gpios)
#define ANY_INST_USE_4B_ADDR_OPCODES DT_ANY_INST_HAS_BOOL_STATUS_OKAY(use_4b_addr_opcodes)
#define ANY_INST_HAS_FLSR \
DT_ANY_INST_HAS_BOOL_STATUS_OKAY(use_flag_status_register)
#define ANY_INST_USE_FAST_READ DT_ANY_INST_HAS_BOOL_STATUS_OKAY(use_fast_read)
#ifdef CONFIG_SPI_NOR_ACTIVE_DWELL_MS
#define ACTIVE_DWELL_MS CONFIG_SPI_NOR_ACTIVE_DWELL_MS
#else
#define ACTIVE_DWELL_MS 0
#endif
#define DEV_CFG(_dev_) ((const struct spi_nor_config * const) (_dev_)->config)
/* MXICY Related defines*/
/* MXICY Low-power/high perf mode is second bit in configuration register 2 */
#define LH_SWITCH_BIT 9
#define JEDEC_MACRONIX_ID 0xc2
#define JEDEC_MX25R_TYPE_ID 0x28
/* Build-time data associated with the device. */
struct spi_nor_config {
/* Devicetree SPI configuration */
struct spi_dt_spec spi;
#if ANY_INST_HAS_RESET_GPIOS
const struct gpio_dt_spec reset;
#endif
/* Runtime SFDP stores no static configuration. */
#ifndef CONFIG_SPI_NOR_SFDP_RUNTIME
/* Size of device in bytes, from size property */
uint32_t flash_size;
#ifdef CONFIG_FLASH_PAGE_LAYOUT
/* Flash page layout can be determined from devicetree. */
struct flash_pages_layout layout;
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
/* Expected JEDEC ID, from jedec-id property */
uint8_t jedec_id[SPI_NOR_MAX_ID_LEN];
#if defined(CONFIG_SPI_NOR_SFDP_MINIMAL)
/* Optional support for entering 32-bit address mode. */
uint8_t enter_4byte_addr;
#endif /* CONFIG_SPI_NOR_SFDP_MINIMAL */
#if defined(CONFIG_SPI_NOR_SFDP_DEVICETREE)
/* Length of BFP structure, in 32-bit words. */
uint8_t bfp_len;
/* Pointer to the BFP table as read from the device
* (little-endian stored words), from sfdp-bfp property
*/
const struct jesd216_bfp *bfp;
#endif /* CONFIG_SPI_NOR_SFDP_DEVICETREE */
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
/* Optional bits in SR to be cleared on startup.
*
* This information cannot be derived from SFDP.
*/
uint8_t has_lock;
#if ANY_INST_HAS_WP_GPIOS
/* The write-protect GPIO (wp-gpios) */
const struct gpio_dt_spec wp;
#endif
#if ANY_INST_HAS_HOLD_GPIOS
/* The hold GPIO (hold-gpios) */
const struct gpio_dt_spec hold;
#endif
#if ANY_INST_HAS_DPD
uint16_t t_enter_dpd; /* in milliseconds */
uint16_t t_dpdd_ms; /* in milliseconds */
#if ANY_INST_HAS_T_EXIT_DPD
uint16_t t_exit_dpd; /* in milliseconds */
#endif
#endif
#if ANY_INST_HAS_DPD_WAKEUP_SEQUENCE
uint16_t t_crdp_ms; /* in milliseconds */
uint16_t t_rdp_ms; /* in milliseconds */
#endif
#if ANY_INST_HAS_MXICY_MX25R_POWER_MODE
bool mxicy_mx25r_power_mode;
#endif
bool use_4b_addr_opcodes:1;
/* exist flags for dts opt-ins */
bool dpd_exist:1;
bool dpd_wakeup_sequence_exist:1;
bool mxicy_mx25r_power_mode_exist:1;
bool reset_gpios_exist:1;
bool requires_ulbpr_exist:1;
bool wp_gpios_exist:1;
bool hold_gpios_exist:1;
bool has_flsr: 1;
bool use_fast_read: 1;
};
/**
* struct spi_nor_data - Structure for defining the SPI NOR access
* @sem: The semaphore to access to the flash
*/
struct spi_nor_data {
struct k_sem sem;
#if ANY_INST_HAS_DPD
/* Low 32-bits of uptime counter at which device last entered
* deep power-down.
*/
uint32_t ts_enter_dpd;
#endif
/* Miscellaneous flags */
/* If set addressed operations should use 32-bit rather than
* 24-bit addresses.
*
* This is ignored if the access parameter to a command
* explicitly specifies 24-bit or 32-bit addressing.
*/
bool flag_access_32bit: 1;
/* Minimal SFDP stores no dynamic configuration. Runtime and
* devicetree store page size and erase_types; runtime also
* stores flash size and layout.
*/
#ifndef CONFIG_SPI_NOR_SFDP_MINIMAL
struct jesd216_erase_type erase_types[JESD216_NUM_ERASE_TYPES];
/* Number of bytes per page */
uint16_t page_size;
#ifdef CONFIG_SPI_NOR_SFDP_RUNTIME
/* Size of flash, in bytes */
uint32_t flash_size;
#ifdef CONFIG_FLASH_PAGE_LAYOUT
struct flash_pages_layout layout;
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
#endif /* CONFIG_SPI_NOR_SFDP_MINIMAL */
};
#ifdef CONFIG_SPI_NOR_SFDP_MINIMAL
/* The historically supported erase sizes. */
static const struct jesd216_erase_type minimal_erase_types[JESD216_NUM_ERASE_TYPES] = {
{
.cmd = SPI_NOR_CMD_BE,
.exp = 16,
},
{
.cmd = SPI_NOR_CMD_SE,
.exp = 12,
},
};
static const struct jesd216_erase_type minimal_erase_types_4b[JESD216_NUM_ERASE_TYPES] = {
{
.cmd = SPI_NOR_CMD_BE_4B,
.exp = 16,
},
{
.cmd = SPI_NOR_CMD_SE_4B,
.exp = 12,
},
};
#endif /* CONFIG_SPI_NOR_SFDP_MINIMAL */
/* Register writes should be ready extremely quickly */
#define WAIT_READY_REGISTER K_NO_WAIT
/* Page writes range from sub-ms to 10ms */
#define WAIT_READY_WRITE K_TICKS(1)
#ifdef CONFIG_SPI_NOR_SLEEP_WHILE_WAITING_UNTIL_READY
#define WAIT_READY_ERASE K_MSEC(CONFIG_SPI_NOR_SLEEP_ERASE_MS)
#else
#define WAIT_READY_ERASE K_NO_WAIT
#endif
static int spi_nor_write_protection_set(const struct device *dev,
bool write_protect);
/* Get pointer to array of supported erase types. Static const for
* minimal, data for runtime and devicetree.
*/
static inline const struct jesd216_erase_type *
dev_erase_types(const struct device *dev)
{
#ifdef CONFIG_SPI_NOR_SFDP_MINIMAL
if (IS_ENABLED(ANY_INST_USE_4B_ADDR_OPCODES) && DEV_CFG(dev)->use_4b_addr_opcodes) {
return minimal_erase_types_4b;
}
return minimal_erase_types;
#else /* CONFIG_SPI_NOR_SFDP_MINIMAL */
const struct spi_nor_data *data = dev->data;
return data->erase_types;
#endif /* CONFIG_SPI_NOR_SFDP_MINIMAL */
}
/* Get the size of the flash device. Data for runtime, constant for
* minimal and devicetree.
*/
static inline uint32_t dev_flash_size(const struct device *dev)
{
#ifdef CONFIG_SPI_NOR_SFDP_RUNTIME
const struct spi_nor_data *data = dev->data;
return data->flash_size;
#else /* CONFIG_SPI_NOR_SFDP_RUNTIME */
const struct spi_nor_config *cfg = dev->config;
return cfg->flash_size;
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
}
/* Get the flash device page size. Constant for minimal, data for
* runtime and devicetree.
*/
static inline uint16_t dev_page_size(const struct device *dev)
{
#ifdef CONFIG_SPI_NOR_SFDP_MINIMAL
return DT_INST_PROP_OR(0, page_size, 256);
#else /* CONFIG_SPI_NOR_SFDP_MINIMAL */
const struct spi_nor_data *data = dev->data;
return data->page_size;
#endif /* CONFIG_SPI_NOR_SFDP_MINIMAL */
}
static const struct flash_parameters flash_nor_parameters = {
.write_block_size = 1,
.erase_value = 0xff,
};
/* Capture the time at which the device entered deep power-down. */
static inline void record_entered_dpd(const struct device *const dev)
{
#if ANY_INST_HAS_DPD
const struct spi_nor_config *const driver_config = dev->config;
if (driver_config->dpd_exist) {
struct spi_nor_data *const driver_data = dev->data;
driver_data->ts_enter_dpd = k_uptime_get_32();
}
#else
ARG_UNUSED(dev);
#endif
}
#if ANY_INST_HAS_DPD
/* Check the current time against the time DPD was entered and delay
* until it's ok to initiate the DPD exit process.
*/
static inline void delay_until_exit_dpd_ok(const struct device *const dev)
{
const struct spi_nor_config *const driver_config = dev->config;
if (driver_config->dpd_exist) {
struct spi_nor_data *const driver_data = dev->data;
int32_t since = (int32_t)(k_uptime_get_32() - driver_data->ts_enter_dpd);
/* If the time is negative the 32-bit counter has wrapped,
* which is certainly long enough no further delay is
* required. Otherwise we have to check whether it's been
* long enough taking into account necessary delays for
* entering and exiting DPD.
*/
if (since >= 0) {
/* Subtract time required for DPD to be reached */
since -= driver_config->t_enter_dpd;
/* Subtract time required in DPD before exit */
since -= driver_config->t_dpdd_ms;
/* If the adjusted time is negative we have to wait
* until it reaches zero before we can proceed.
*/
if (since < 0) {
k_sleep(K_MSEC((uint32_t)-since));
}
}
}
}
#endif /* ANY_INST_HAS_DPD */
/* Indicates that an access command includes bytes for the address.
* If not provided the opcode is not followed by address bytes.
*/
#define NOR_ACCESS_ADDRESSED BIT(0)
/* Indicates that addressed access uses a 24-bit address regardless of
* spi_nor_data::flag_32bit_addr.
*/
#define NOR_ACCESS_24BIT_ADDR BIT(1)
/* Indicates that addressed access uses a 32-bit address regardless of
* spi_nor_data::flag_32bit_addr.
*/
#define NOR_ACCESS_32BIT_ADDR BIT(2)
/* Indicates that a dummy byte is to be sent following the address.
*/
#define NOR_ACCESS_DUMMY_BYTE BIT(3)
/* Indicates that an access command is performing a write. If not
* provided access is a read.
*/
#define NOR_ACCESS_WRITE BIT(7)
/*
* @brief Send an SPI command
*
* @param dev Device struct
* @param opcode The command to send
* @param access flags that determine how the command is constructed.
* See NOR_ACCESS_*.
* @param addr The address to send
* @param data The buffer to store or read the value
* @param length The size of the buffer
* @return 0 on success, negative errno code otherwise
*/
static int spi_nor_access(const struct device *const dev,
uint8_t opcode, unsigned int access,
off_t addr, void *data, size_t length)
{
const struct spi_nor_config *const driver_cfg = dev->config;
struct spi_nor_data *const driver_data = dev->data;
bool is_addressed = (access & NOR_ACCESS_ADDRESSED) != 0U;
bool is_write = (access & NOR_ACCESS_WRITE) != 0U;
bool has_dummy = (access & NOR_ACCESS_DUMMY_BYTE) != 0U;
uint8_t buf[6] = {opcode};
struct spi_buf spi_buf_tx[2] = {
{
.buf = buf,
.len = 1,
},
{
.buf = data,
.len = length
}
};
struct spi_buf spi_buf_rx[2] = {
{
.buf = NULL,
.len = 1,
},
{
.buf = data,
.len = length
}
};
if (is_addressed) {
bool access_24bit = (access & NOR_ACCESS_24BIT_ADDR) != 0;
bool access_32bit = (access & NOR_ACCESS_32BIT_ADDR) != 0;
bool use_32bit = (access_32bit
|| (!access_24bit
&& driver_data->flag_access_32bit));
union {
uint32_t u32;
uint8_t u8[4];
} addr32 = {
.u32 = sys_cpu_to_be32(addr),
};
if (use_32bit) {
memcpy(&buf[1], &addr32.u8[0], 4);
spi_buf_tx[0].len += 4;
spi_buf_rx[0].len += 4;
} else {
memcpy(&buf[1], &addr32.u8[1], 3);
spi_buf_tx[0].len += 3;
spi_buf_rx[0].len += 3;
}
};
if (has_dummy) {
spi_buf_tx[0].len++;
spi_buf_rx[0].len++;
}
const struct spi_buf_set tx_set = {
.buffers = spi_buf_tx,
.count = (is_write && length != 0) ? 2 : 1,
};
const struct spi_buf_set rx_set = {
.buffers = spi_buf_rx,
.count = 2,
};
if (is_write) {
return spi_write_dt(&driver_cfg->spi, &tx_set);
}
return spi_transceive_dt(&driver_cfg->spi, &tx_set, &rx_set);
}
#define spi_nor_cmd_read(dev, opcode, dest, length) \
spi_nor_access(dev, opcode, 0, 0, dest, length)
#define spi_nor_cmd_addr_read(dev, opcode, addr, dest, length) \
spi_nor_access(dev, opcode, NOR_ACCESS_ADDRESSED, addr, dest, length)
#define spi_nor_cmd_addr_read_3b(dev, opcode, addr, dest, length) \
spi_nor_access(dev, opcode, NOR_ACCESS_24BIT_ADDR | NOR_ACCESS_ADDRESSED, addr, dest, \
length)
#define spi_nor_cmd_addr_read_4b(dev, opcode, addr, dest, length) \
spi_nor_access(dev, opcode, NOR_ACCESS_32BIT_ADDR | NOR_ACCESS_ADDRESSED, addr, dest, \
length)
#define spi_nor_cmd_addr_fast_read(dev, opcode, addr, dest, length) \
spi_nor_access(dev, opcode, NOR_ACCESS_ADDRESSED | NOR_ACCESS_DUMMY_BYTE, addr, dest, \
length)
#define spi_nor_cmd_addr_fast_read_3b(dev, opcode, addr, dest, length) \
spi_nor_access(dev, opcode, \
NOR_ACCESS_24BIT_ADDR | NOR_ACCESS_ADDRESSED | NOR_ACCESS_DUMMY_BYTE, addr, \
dest, length)
#define spi_nor_cmd_addr_fast_read_4b(dev, opcode, addr, dest, length) \
spi_nor_access(dev, opcode, \
NOR_ACCESS_32BIT_ADDR | NOR_ACCESS_ADDRESSED | NOR_ACCESS_DUMMY_BYTE, addr, \
dest, length)
#define spi_nor_cmd_write(dev, opcode) \
spi_nor_access(dev, opcode, NOR_ACCESS_WRITE, 0, NULL, 0)
#define spi_nor_cmd_addr_write(dev, opcode, addr, src, length) \
spi_nor_access(dev, opcode, NOR_ACCESS_WRITE | NOR_ACCESS_ADDRESSED, \
addr, (void *)src, length)
#define spi_nor_cmd_addr_write_3b(dev, opcode, addr, src, length) \
spi_nor_access(dev, opcode, \
NOR_ACCESS_24BIT_ADDR | NOR_ACCESS_WRITE | NOR_ACCESS_ADDRESSED, addr, \
(void *)src, length)
#define spi_nor_cmd_addr_write_4b(dev, opcode, addr, src, length) \
spi_nor_access(dev, opcode, \
NOR_ACCESS_32BIT_ADDR | NOR_ACCESS_WRITE | NOR_ACCESS_ADDRESSED, addr, \
(void *)src, length)
/**
* @brief Wait until the flash is ready
*
* @note The device must be externally acquired before invoking this
* function.
*
* This function should be invoked after every ERASE, PROGRAM, or
* WRITE_STATUS operation before continuing. This allows us to assume
* that the device is ready to accept new commands at any other point
* in the code.
*
* @param dev The device structure
* @param poll_delay Duration between polls of status register
* @return 0 on success, negative errno code otherwise
*/
static int spi_nor_wait_until_ready(const struct device *dev, k_timeout_t poll_delay)
{
const struct spi_nor_config *cfg = dev->config;
int ret;
uint8_t reg;
ARG_UNUSED(poll_delay);
while (true) {
/* If flag status register is present, check it rather than the standard
* status register since it allows better error detection. Also, some devices
* that have it require it to be read after a program operation.
*/
if (IS_ENABLED(ANY_INST_HAS_FLSR) && cfg->has_flsr) {
ret = spi_nor_cmd_read(dev, SPI_NOR_CMD_RDFLSR, &reg, sizeof(reg));
if (ret) {
break;
}
if (reg & SPI_NOR_FLSR_READY) {
if (reg & SPI_NOR_FLSR_ERASE_FAIL) {
LOG_ERR("Erase failure");
ret = -EIO;
}
if (reg & SPI_NOR_FLSR_PROGRAM_FAIL) {
LOG_ERR("Program failure");
ret = -EIO;
}
if (reg & SPI_NOR_FLSR_PROT_ERROR) {
LOG_ERR("Protection violation");
ret = -EIO;
}
if (ret) {
/* Clear flag status register for next operation */
int ret2 = spi_nor_cmd_write(dev, SPI_NOR_CMD_CLRFLSR);
if (ret2) {
LOG_ERR("Failed to clear flag status register: %d",
ret2);
}
}
break;
}
} else {
ret = spi_nor_cmd_read(dev, SPI_NOR_CMD_RDSR, &reg, sizeof(reg));
/* Exit on error or no longer WIP */
if (ret || !(reg & SPI_NOR_WIP_BIT)) {
break;
}
}
#ifdef CONFIG_SPI_NOR_SLEEP_WHILE_WAITING_UNTIL_READY
/* Don't monopolise the CPU while waiting for ready */
k_sleep(poll_delay);
#endif /* CONFIG_SPI_NOR_SLEEP_WHILE_WAITING_UNTIL_READY */
}
return ret;
}
#if defined(CONFIG_SPI_NOR_SFDP_RUNTIME) || defined(CONFIG_FLASH_JESD216_API)
/*
* @brief Read content from the SFDP hierarchy
*
* @note The device must be externally acquired before invoking this
* function.
*
* @param dev Device struct
* @param addr The address to send
* @param data The buffer to store or read the value
* @param length The size of the buffer
* @return 0 on success, negative errno code otherwise
*/
static int read_sfdp(const struct device *const dev,
off_t addr, void *data, size_t length)
{
/* READ_SFDP requires a 24-bit address followed by a single
* byte for a wait state. This is effected by using 32-bit
* address by shifting the 24-bit address up 8 bits.
*/
return spi_nor_access(dev, JESD216_CMD_READ_SFDP,
NOR_ACCESS_32BIT_ADDR | NOR_ACCESS_ADDRESSED,
addr << 8, data, length);
}
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
static int enter_dpd(const struct device *const dev)
{
int ret = 0;
const struct spi_nor_config *cfg = dev->config;
if (cfg->dpd_exist) {
ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_DPD);
if (ret == 0) {
record_entered_dpd(dev);
}
}
return ret;
}
static int exit_dpd(const struct device *const dev)
{
int ret = 0;
#if ANY_INST_HAS_DPD
const struct spi_nor_config *cfg = dev->config;
if (cfg->dpd_exist) {
delay_until_exit_dpd_ok(dev);
if (cfg->dpd_wakeup_sequence_exist) {
#if ANY_INST_HAS_DPD_WAKEUP_SEQUENCE
/* Assert CSn and wait for tCRDP.
*
* Unfortunately the SPI API doesn't allow us to
* control CSn so fake it by writing a known-supported
* single-byte command, hoping that'll hold the assert
* long enough. This is highly likely, since the
* duration is usually less than two SPI clock cycles.
*/
ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_RDID);
/* Deassert CSn and wait for tRDP */
k_sleep(K_MSEC(cfg->t_rdp_ms));
#endif /* ANY_INST_HAS_DPD_WAKEUP_SEQUENCE */
} else {
ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_RDPD);
#if ANY_INST_HAS_T_EXIT_DPD
if (ret == 0) {
if (cfg->dpd_exist) {
k_sleep(K_MSEC(cfg->t_exit_dpd));
}
}
#endif /* T_EXIT_DPD */
}
}
#endif /* ANY_INST_HAS_DPD */
return ret;
}
/* Everything necessary to acquire owning access to the device. */
static void acquire_device(const struct device *dev)
{
const struct spi_nor_config *cfg = dev->config;
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
struct spi_nor_data *const driver_data = dev->data;
k_sem_take(&driver_data->sem, K_FOREVER);
}
(void)pm_device_runtime_get(cfg->spi.bus);
}
/* Everything necessary to release access to the device. */
static void release_device(const struct device *dev)
{
const struct spi_nor_config *cfg = dev->config;
(void)pm_device_runtime_put(cfg->spi.bus);
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
struct spi_nor_data *const driver_data = dev->data;
k_sem_give(&driver_data->sem);
}
}
/**
* @brief Read the status register.
*
* @note The device must be externally acquired before invoking this
* function.
*
* @param dev Device struct
*
* @return the non-negative value of the status register, or an error code.
*/
static int spi_nor_rdsr(const struct device *dev)
{
uint8_t reg;
int ret = spi_nor_cmd_read(dev, SPI_NOR_CMD_RDSR, &reg, sizeof(reg));
if (ret == 0) {
ret = reg;
}
return ret;
}
/**
* @brief Write the status register.
*
* @note The device must be externally acquired before invoking this
* function.
*
* @param dev Device struct
* @param sr The new value of the status register
*
* @return 0 on success or a negative error code.
*/
static int spi_nor_wrsr(const struct device *dev,
uint8_t sr)
{
int ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_WREN);
if (ret != 0) {
return ret;
}
ret = spi_nor_access(dev, SPI_NOR_CMD_WRSR, NOR_ACCESS_WRITE, 0, &sr,
sizeof(sr));
if (ret != 0) {
return ret;
}
return spi_nor_wait_until_ready(dev, WAIT_READY_REGISTER);
}
#if ANY_INST_HAS_MXICY_MX25R_POWER_MODE
/**
* @brief Read the configuration register.
*
* @note The device must be externally acquired before invoking this
* function.
*
* @param dev Device struct
*
* @return the non-negative value of the configuration register, or an error code.
*/
static int mxicy_rdcr(const struct device *dev)
{
const struct spi_nor_config *cfg = dev->config;
uint16_t cr = -ENOSYS;
if (cfg->mxicy_mx25r_power_mode_exist) {
int ret = spi_nor_cmd_read(dev, CMD_RDCR, &cr, sizeof(cr));
if (ret < 0) {
return ret;
}
}
return cr;
}
/**
* @brief Write the configuration register.
*
* @note The device must be externally acquired before invoking this
* function.
*
* @param dev Device struct
* @param cr The new value of the configuration register
*
* @return 0 on success or a negative error code.
*/
static int mxicy_wrcr(const struct device *dev,
uint16_t cr)
{
const struct spi_nor_config *cfg = dev->config;
int ret = -ENOSYS;
/* The configuration register bytes on the Macronix MX25R devices are
* written using the Write Status Register command where the configuration
* register bytes are written as two extra bytes after the status register.
* First read out the current status register to preserve the value.
*/
if (cfg->mxicy_mx25r_power_mode_exist) {
int sr = spi_nor_rdsr(dev);
if (sr < 0) {
LOG_ERR("Read status register failed: %d", sr);
return sr;
}
ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_WREN);
if (ret != 0) {
return ret;
}
uint8_t data[] = {
sr,
cr & 0xFF, /* Configuration register 1 */
cr >> 8 /* Configuration register 2 */
};
ret = spi_nor_access(dev, SPI_NOR_CMD_WRSR, NOR_ACCESS_WRITE, 0,
data, sizeof(data));
if (ret != 0) {
return ret;
}
ret = spi_nor_wait_until_ready(dev, WAIT_READY_REGISTER);
}
return ret;
}
static int mxicy_configure(const struct device *dev, const uint8_t *jedec_id)
{
const struct spi_nor_config *cfg = dev->config;
int ret = -ENOSYS;
if (cfg->mxicy_mx25r_power_mode_exist) {
/* Low-power/high perf mode is second bit in configuration register 2 */
int current_cr, new_cr;
/* lh_switch enum index:
* 0: Ultra low power
* 1: High performance mode
*/
const bool use_high_perf = cfg->mxicy_mx25r_power_mode;
/* Only supported on Macronix MX25R Ultra Low Power series. */
if (jedec_id[0] != JEDEC_MACRONIX_ID || jedec_id[1] != JEDEC_MX25R_TYPE_ID) {
LOG_WRN("L/H switch not supported for device id: %02x %02x %02x",
jedec_id[0], jedec_id[1], jedec_id[2]);
/* Do not return an error here because the flash still functions */
return 0;
}
acquire_device(dev);
/* Read current configuration register */
ret = mxicy_rdcr(dev);
if (ret < 0) {
release_device(dev);
return ret;
}
current_cr = ret;
LOG_DBG("Use high performance mode? %d", use_high_perf);
new_cr = current_cr;
WRITE_BIT(new_cr, LH_SWITCH_BIT, use_high_perf);
if (new_cr != current_cr) {
ret = mxicy_wrcr(dev, new_cr);
} else {
ret = 0;
}
if (ret < 0) {
LOG_ERR("Enable high performace mode failed: %d", ret);
}
release_device(dev);
}
return ret;
}
#endif /* ANY_INST_HAS_MXICY_MX25R_POWER_MODE */
static int spi_nor_read(const struct device *dev, off_t addr, void *dest,
size_t size)
{
const struct spi_nor_config *cfg = dev->config;
const size_t flash_size = dev_flash_size(dev);
int ret;
/* should be between 0 and flash size */
if ((addr < 0) || ((addr + size) > flash_size)) {
return -EINVAL;
}
/* Ensure flash is powered before read */
if (pm_device_runtime_get(dev) < 0) {
return -EIO;
}
acquire_device(dev);
if (IS_ENABLED(ANY_INST_USE_4B_ADDR_OPCODES) && cfg->use_4b_addr_opcodes) {
if (addr > SPI_NOR_3B_ADDR_MAX) {
if (IS_ENABLED(ANY_INST_USE_FAST_READ) && cfg->use_fast_read) {
ret = spi_nor_cmd_addr_fast_read_4b(dev, SPI_NOR_CMD_READ_FAST_4B,
addr, dest, size);
} else {
ret = spi_nor_cmd_addr_read_4b(dev, SPI_NOR_CMD_READ_4B, addr, dest,
size);
}
} else {
if (IS_ENABLED(ANY_INST_USE_FAST_READ) && cfg->use_fast_read) {
ret = spi_nor_cmd_addr_fast_read_3b(dev, SPI_NOR_CMD_READ_FAST,
addr, dest, size);
} else {
ret = spi_nor_cmd_addr_read_3b(dev, SPI_NOR_CMD_READ, addr, dest,
size);
}
}
} else {
if (IS_ENABLED(ANY_INST_USE_FAST_READ) && cfg->use_fast_read) {
ret = spi_nor_cmd_addr_fast_read(dev, SPI_NOR_CMD_READ_FAST, addr, dest,
size);
} else {
ret = spi_nor_cmd_addr_read(dev, SPI_NOR_CMD_READ, addr, dest, size);
}
}
release_device(dev);
/* Release flash power requirement */
(void)pm_device_runtime_put_async(dev, K_MSEC(ACTIVE_DWELL_MS));
return ret;
}
#if defined(CONFIG_FLASH_EX_OP_ENABLED)
static int flash_spi_nor_ex_op(const struct device *dev, uint16_t code,
const uintptr_t in, void *out)
{
int ret;
ARG_UNUSED(in);
ARG_UNUSED(out);
if (pm_device_runtime_get(dev) < 0) {
return -EIO;
}
acquire_device(dev);
switch (code) {
case FLASH_EX_OP_RESET:
ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_RESET_EN);
if (ret == 0) {
ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_RESET_MEM);
}
break;
default:
ret = -ENOTSUP;
break;
}
release_device(dev);
(void)pm_device_runtime_put_async(dev, K_MSEC(ACTIVE_DWELL_MS));
return ret;
}
#endif
static int spi_nor_write(const struct device *dev, off_t addr,
const void *src,
size_t size)
{
const size_t flash_size = dev_flash_size(dev);
const uint16_t page_size = dev_page_size(dev);
int ret;
/* should be between 0 and flash size */
if ((addr < 0) || ((size + addr) > flash_size)) {
return -EINVAL;
}
/* Ensure flash is powered before write */
if (pm_device_runtime_get(dev) < 0) {
return -EIO;
}
acquire_device(dev);
ret = spi_nor_write_protection_set(dev, false);
if (ret == 0) {
while (size > 0) {
size_t to_write = size;
/* Don't write more than a page. */
if (to_write >= page_size) {
to_write = page_size;
}
/* Don't write across a page boundary */
if (((addr + to_write - 1U) / page_size)
!= (addr / page_size)) {
to_write = page_size - (addr % page_size);
}
ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_WREN);
if (ret != 0) {
break;
}
if (IS_ENABLED(ANY_INST_USE_4B_ADDR_OPCODES) &&
DEV_CFG(dev)->use_4b_addr_opcodes) {
if (addr > SPI_NOR_3B_ADDR_MAX) {
ret = spi_nor_cmd_addr_write_4b(dev, SPI_NOR_CMD_PP_4B,
addr, src, to_write);
} else {
ret = spi_nor_cmd_addr_write_3b(dev, SPI_NOR_CMD_PP, addr,
src, to_write);
}
} else {
ret = spi_nor_cmd_addr_write(dev, SPI_NOR_CMD_PP, addr, src,
to_write);
}
if (ret != 0) {
break;
}
size -= to_write;
src = (const uint8_t *)src + to_write;
addr += to_write;
ret = spi_nor_wait_until_ready(dev, WAIT_READY_WRITE);
if (ret != 0) {
break;
}
}
}
int ret2 = spi_nor_write_protection_set(dev, true);
if (!ret) {
ret = ret2;
}
release_device(dev);
/* Release flash power requirement */
(void)pm_device_runtime_put_async(dev, K_MSEC(ACTIVE_DWELL_MS));
return ret;
}
static int spi_nor_erase(const struct device *dev, off_t addr, size_t size)
{
const size_t flash_size = dev_flash_size(dev);
int ret;
/* erase area must be subregion of device */
if ((addr < 0) || ((size + addr) > flash_size)) {
return -EINVAL;
}
/* address must be sector-aligned */
if (!SPI_NOR_IS_SECTOR_ALIGNED(addr)) {
return -EINVAL;
}
/* size must be a multiple of sectors */
if ((size % SPI_NOR_SECTOR_SIZE) != 0) {
return -EINVAL;
}
/* Ensure flash is powered before erase */
if (pm_device_runtime_get(dev) < 0) {
return -EIO;
}
acquire_device(dev);
ret = spi_nor_write_protection_set(dev, false);
while ((size > 0) && (ret == 0)) {
ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_WREN);
if (ret) {
break;
}
if (size == flash_size) {
/* chip erase */
ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_CE);
size -= flash_size;
} else {
const struct jesd216_erase_type *erase_types =
dev_erase_types(dev);
const struct jesd216_erase_type *bet = NULL;
for (uint8_t ei = 0; ei < JESD216_NUM_ERASE_TYPES; ++ei) {
const struct jesd216_erase_type *etp =
&erase_types[ei];
if ((etp->exp != 0)
&& SPI_NOR_IS_ALIGNED(addr, etp->exp)
&& (size >= BIT(etp->exp))
&& ((bet == NULL)
|| (etp->exp > bet->exp))) {
bet = etp;
}
}
if (bet != NULL) {
if (IS_ENABLED(ANY_INST_USE_4B_ADDR_OPCODES) &&
DEV_CFG(dev)->use_4b_addr_opcodes) {
ret = spi_nor_cmd_addr_write_4b(dev, bet->cmd, addr, NULL,
0);
} else {
ret = spi_nor_cmd_addr_write(dev, bet->cmd, addr, NULL, 0);
}
addr += BIT(bet->exp);
size -= BIT(bet->exp);
} else {
LOG_DBG("Can't erase %zu at 0x%lx",
size, (long)addr);
ret = -EINVAL;
}
}
if (ret != 0) {
break;
}
ret = spi_nor_wait_until_ready(dev, WAIT_READY_ERASE);
}
int ret2 = spi_nor_write_protection_set(dev, true);
if (!ret) {
ret = ret2;
}
release_device(dev);
/* Release flash power requirement */
(void)pm_device_runtime_put_async(dev, K_MSEC(ACTIVE_DWELL_MS));
return ret;
}
/* @note The device must be externally acquired before invoking this
* function.
*/
static int spi_nor_write_protection_set(const struct device *dev,
bool write_protect)
{
int ret;
const struct spi_nor_config *cfg = dev->config;
#if ANY_INST_HAS_WP_GPIOS
if (DEV_CFG(dev)->wp_gpios_exist && write_protect == false) {
gpio_pin_set_dt(&(DEV_CFG(dev)->wp), 0);
}
#endif
ret = spi_nor_cmd_write(dev, (write_protect) ?
SPI_NOR_CMD_WRDI : SPI_NOR_CMD_WREN);
if (cfg->requires_ulbpr_exist
&& (ret == 0)
&& !write_protect) {
ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_ULBPR);
}
#if ANY_INST_HAS_WP_GPIOS
if (DEV_CFG(dev)->wp_gpios_exist && write_protect == true) {
gpio_pin_set_dt(&(DEV_CFG(dev)->wp), 1);
}
#endif
return ret;
}
#if defined(CONFIG_FLASH_JESD216_API) || defined(CONFIG_SPI_NOR_SFDP_RUNTIME)
static int spi_nor_sfdp_read(const struct device *dev, off_t addr,
void *dest, size_t size)
{
if (pm_device_runtime_get(dev) < 0) {
return -EIO;
}
acquire_device(dev);
int ret = read_sfdp(dev, addr, dest, size);
release_device(dev);
(void)pm_device_runtime_put_async(dev, K_MSEC(ACTIVE_DWELL_MS));
return ret;
}
#endif /* CONFIG_FLASH_JESD216_API || CONFIG_SPI_NOR_SFDP_RUNTIME */
static int spi_nor_read_jedec_id(const struct device *dev,
uint8_t *id)
{
if (id == NULL) {
return -EINVAL;
}
if (pm_device_runtime_get(dev) < 0) {
return -EIO;
}
acquire_device(dev);
int ret = spi_nor_cmd_read(dev, SPI_NOR_CMD_RDID, id, SPI_NOR_MAX_ID_LEN);
release_device(dev);
(void)pm_device_runtime_put_async(dev, K_MSEC(ACTIVE_DWELL_MS));
return ret;
}
/* Put the device into the appropriate address mode, if supported.
*
* On successful return spi_nor_data::flag_access_32bit has been set
* (cleared) if the device is configured for 4-byte (3-byte) addresses
* for read, write, and erase commands.
*
* @param dev the device
*
* @param enter_4byte_addr the Enter 4-Byte Addressing bit set from
* DW16 of SFDP BFP. A value of all zeros or all ones is interpreted
* as "not supported".
*
* @retval -ENOTSUP if 4-byte addressing is supported but not in a way
* that the driver can handle.
* @retval negative codes if the attempt was made and failed
* @retval 0 if the device is successfully left in 24-bit mode or
* reconfigured to 32-bit mode.
*/
static int spi_nor_set_address_mode(const struct device *dev,
uint8_t enter_4byte_addr)
{
int ret = 0;
LOG_DBG("Checking enter-4byte-addr %02x", enter_4byte_addr);
/* Do nothing if not provided (either no bits or all bits
* set).
*/
if ((enter_4byte_addr == 0)
|| (enter_4byte_addr == 0xff)) {
return 0;
}
/* This currently only supports command 0xB7 (Enter 4-Byte
* Address Mode), with or without preceding WREN.
* Or when BIT(3) is set where the 4-byte address mode can be entered
* by setting BIT(7) in a register via a 0x17 write
* instruction. See JEDEC 216F 16th DWORD.
*/
if ((enter_4byte_addr & 0x0b) == 0) {
return -ENOTSUP;
}
acquire_device(dev);
if ((enter_4byte_addr & 0x08) != 0) {
/* Enter 4-byte address mode by setting BIT(7) in a register
* via a 0x17 write instruction.
*/
uint8_t sr = BIT(7);
ret = spi_nor_access(dev, 0x17, NOR_ACCESS_WRITE, 0, &sr, sizeof(sr));
goto done;
}
if ((enter_4byte_addr & 0x02) != 0) {
/* Enter after WREN. */
ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_WREN);
}
if (ret == 0) {
ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_4BA);
}
done:
if (ret == 0) {
struct spi_nor_data *data = dev->data;
data->flag_access_32bit = true;
}
release_device(dev);
return ret;
}
#ifndef CONFIG_SPI_NOR_SFDP_MINIMAL
static int spi_nor_process_bfp(const struct device *dev,
const struct jesd216_param_header *php,
const struct jesd216_bfp *bfp)
{
struct spi_nor_data *data = dev->data;
struct jesd216_erase_type *etp = data->erase_types;
const size_t flash_size = jesd216_bfp_density(bfp) / 8U;
LOG_INF("%s: %u %ciBy flash", dev->name,
(flash_size < (1024U * 1024U)) ? (uint32_t)(flash_size >> 10)
: (uint32_t)(flash_size >> 20),
(flash_size < (1024U * 1024U)) ? 'k' : 'M');
/* Copy over the erase types, preserving their order. (The
* Sector Map Parameter table references them by index.)
*/
memset(data->erase_types, 0, sizeof(data->erase_types));
for (uint8_t ti = 1; ti <= ARRAY_SIZE(data->erase_types); ++ti) {
if (jesd216_bfp_erase(bfp, ti, etp) == 0) {
LOG_DBG("Erase %u with %02x", (uint32_t)BIT(etp->exp), etp->cmd);
}
++etp;
}
data->page_size = jesd216_bfp_page_size(php, bfp);
#ifdef CONFIG_SPI_NOR_SFDP_RUNTIME
data->flash_size = flash_size;
#else /* CONFIG_SPI_NOR_SFDP_RUNTIME */
if (flash_size != dev_flash_size(dev)) {
LOG_ERR("BFP flash size mismatch with devicetree");
return -EINVAL;
}
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
LOG_DBG("Page size %u bytes", data->page_size);
/* If 4-byte addressing is supported, switch to it. */
if (jesd216_bfp_addrbytes(bfp) != JESD216_SFDP_BFP_DW1_ADDRBYTES_VAL_3B) {
struct jesd216_bfp_dw16 dw16;
int rc = 0;
if (IS_ENABLED(ANY_INST_USE_4B_ADDR_OPCODES) && DEV_CFG(dev)->use_4b_addr_opcodes) {
LOG_DBG("4-byte addressing supported, using it via specific opcodes");
return 0;
}
if (jesd216_bfp_decode_dw16(php, bfp, &dw16) == 0) {
rc = spi_nor_set_address_mode(dev, dw16.enter_4ba);
}
if (rc != 0) {
LOG_ERR("Unable to enter 4-byte mode: %d\n", rc);
return rc;
}
}
return 0;
}
static int spi_nor_process_sfdp(const struct device *dev)
{
int rc;
#if defined(CONFIG_SPI_NOR_SFDP_RUNTIME)
struct spi_nor_data *dev_data = dev->data;
/* For runtime we need to read the SFDP table, identify the
* BFP block, and process it.
*/
const uint8_t decl_nph = 2;
union {
/* We only process BFP so use one parameter block */
uint8_t raw[JESD216_SFDP_SIZE(decl_nph)];
struct jesd216_sfdp_header sfdp;
} u_header;
const struct jesd216_sfdp_header *hp = &u_header.sfdp;
rc = spi_nor_sfdp_read(dev, 0, u_header.raw, sizeof(u_header.raw));
if (rc != 0) {
LOG_ERR("SFDP read failed: %d", rc);
return rc;
}
uint32_t magic = jesd216_sfdp_magic(hp);
if (magic != JESD216_SFDP_MAGIC) {
LOG_ERR("SFDP magic %08x invalid", magic);
return -EINVAL;
}
LOG_INF("%s: SFDP v %u.%u AP %x with %u PH", dev->name,
hp->rev_major, hp->rev_minor, hp->access, 1 + hp->nph);
const struct jesd216_param_header *php = hp->phdr;
const struct jesd216_param_header *phpe = php + MIN(decl_nph, 1 + hp->nph);
while (php != phpe) {
uint16_t id = jesd216_param_id(php);
LOG_INF("PH%u: %04x rev %u.%u: %u DW @ %x",
(int)(php - hp->phdr), id, php->rev_major, php->rev_minor,
php->len_dw, jesd216_param_addr(php));
if (id == JESD216_SFDP_PARAM_ID_BFP) {
union {
uint32_t dw[MIN(php->len_dw, 20)];
struct jesd216_bfp bfp;
} u_param;
const struct jesd216_bfp *bfp = &u_param.bfp;
rc = spi_nor_sfdp_read(dev, jesd216_param_addr(php),
u_param.dw, sizeof(u_param.dw));
if (rc == 0) {
rc = spi_nor_process_bfp(dev, php, bfp);
}
if (rc != 0) {
LOG_INF("SFDP BFP failed: %d", rc);
break;
}
}
if (id == JESD216_SFDP_PARAM_ID_4B_ADDR_INSTR) {
if (IS_ENABLED(ANY_INST_USE_4B_ADDR_OPCODES) &&
DEV_CFG(dev)->use_4b_addr_opcodes) {
/*
* Check table 4 byte address instruction table to get supported
* erase opcodes when running in 4 byte address mode
*/
union {
uint32_t dw[2];
struct {
uint32_t dummy;
uint8_t type[4];
} types;
} u2;
rc = spi_nor_sfdp_read(
dev, jesd216_param_addr(php), (uint8_t *)u2.dw,
MIN(sizeof(uint32_t) * php->len_dw, sizeof(u2.dw)));
if (rc != 0) {
break;
}
for (uint8_t ei = 0; ei < JESD216_NUM_ERASE_TYPES; ++ei) {
struct jesd216_erase_type *etp = &dev_data->erase_types[ei];
const uint8_t cmd = u2.types.type[ei];
/* 0xff means not supported */
if (cmd == 0xff) {
etp->exp = 0;
etp->cmd = 0;
} else {
etp->cmd = cmd;
};
}
if (!((sys_le32_to_cpu(u2.dw[0]) &
JESD216_SFDP_4B_ADDR_DW1_1S_1S_1S_READ_13_SUP) &&
(sys_le32_to_cpu(u2.dw[0]) &
JESD216_SFDP_4B_ADDR_DW1_1S_1S_1S_PP_12_SUP))) {
LOG_ERR("4-byte addressing not supported");
return -ENOTSUP;
}
}
}
++php;
}
#elif defined(CONFIG_SPI_NOR_SFDP_DEVICETREE)
/* For devicetree we need to synthesize a parameter header and
* process the stored BFP data as if we had read it.
*/
const struct spi_nor_config *cfg = dev->config;
struct jesd216_param_header bfp_hdr = {
.len_dw = cfg->bfp_len,
};
rc = spi_nor_process_bfp(dev, &bfp_hdr, cfg->bfp);
#else
#error Unhandled SFDP choice
#endif
return rc;
}
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
static int setup_pages_layout(const struct device *dev)
{
#if defined(CONFIG_SPI_NOR_SFDP_RUNTIME)
struct spi_nor_data *data = dev->data;
const size_t flash_size = dev_flash_size(dev);
const uint32_t layout_page_size = CONFIG_SPI_NOR_FLASH_LAYOUT_PAGE_SIZE;
uint8_t exp = 0;
/* Find the smallest erase size. */
for (size_t i = 0; i < ARRAY_SIZE(data->erase_types); ++i) {
const struct jesd216_erase_type *etp = &data->erase_types[i];
if ((etp->cmd != 0)
&& ((exp == 0) || (etp->exp < exp))) {
exp = etp->exp;
}
}
if (exp == 0) {
return -ENOTSUP;
}
uint32_t erase_size = BIT(exp);
/* Error if layout page size is not a multiple of smallest
* erase size.
*/
if ((layout_page_size % erase_size) != 0) {
LOG_ERR("layout page %u not compatible with erase size %u",
layout_page_size, erase_size);
return -EINVAL;
}
/* Warn but accept layout page sizes that leave inaccessible
* space.
*/
if ((flash_size % layout_page_size) != 0) {
LOG_INF("layout page %u wastes space with device size %zu",
layout_page_size, flash_size);
}
data->layout.pages_size = layout_page_size;
data->layout.pages_count = flash_size / layout_page_size;
LOG_DBG("layout %zu x %zu By pages", data->layout.pages_count, data->layout.pages_size);
#elif defined(CONFIG_SPI_NOR_SFDP_DEVICETREE)
const struct spi_nor_config *cfg = dev->config;
const struct flash_pages_layout *layout = &cfg->layout;
const size_t flash_size = dev_flash_size(dev);
size_t layout_size = layout->pages_size * layout->pages_count;
if (flash_size != layout_size) {
LOG_ERR("device size %u mismatch %zu * %zu By pages",
flash_size, layout->pages_count, layout->pages_size);
return -EINVAL;
}
#else /* CONFIG_SPI_NOR_SFDP_RUNTIME */
#error Unhandled SFDP choice
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
return 0;
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
#endif /* CONFIG_SPI_NOR_SFDP_MINIMAL */
/**
* @brief Configure the flash
*
* @param dev The flash device structure
* @param info The flash info structure
* @return 0 on success, negative errno code otherwise
*/
static int spi_nor_configure(const struct device *dev)
{
const struct spi_nor_config *cfg = dev->config;
uint8_t jedec_id[SPI_NOR_MAX_ID_LEN];
int rc;
/* Validate bus and CS is ready */
if (!spi_is_ready_dt(&cfg->spi)) {
return -ENODEV;
}
#if ANY_INST_HAS_RESET_GPIOS
if (cfg->reset_gpios_exist) {
if (!gpio_is_ready_dt(&cfg->reset)) {
LOG_ERR("Reset pin not ready");
return -ENODEV;
}
if (gpio_pin_configure_dt(&cfg->reset, GPIO_OUTPUT_ACTIVE)) {
LOG_ERR("Couldn't configure reset pin");
return -ENODEV;
}
rc = gpio_pin_set_dt(&cfg->reset, 0);
if (rc) {
return rc;
}
}
#endif
/* After a soft-reset the flash might be in DPD or busy writing/erasing.
* Exit DPD and wait until flash is ready.
*/
acquire_device(dev);
rc = exit_dpd(dev);
if (rc < 0) {
LOG_ERR("Failed to exit DPD (%d)", rc);
release_device(dev);
return -ENODEV;
}
rc = spi_nor_rdsr(dev);
if (rc > 0 && (rc & SPI_NOR_WIP_BIT)) {
LOG_WRN("Waiting until flash is ready");
rc = spi_nor_wait_until_ready(dev, WAIT_READY_REGISTER);
}
release_device(dev);
if (rc < 0) {
LOG_ERR("Failed to wait until flash is ready (%d)", rc);
return -ENODEV;
}
/* now the spi bus is configured, we can verify SPI
* connectivity by reading the JEDEC ID.
*/
rc = spi_nor_read_jedec_id(dev, jedec_id);
if (rc != 0) {
LOG_ERR("JEDEC ID read failed: %d", rc);
return -ENODEV;
}
#ifndef CONFIG_SPI_NOR_SFDP_RUNTIME
/* For minimal and devicetree we need to check the JEDEC ID
* against the one from devicetree, to ensure we didn't find a
* device that has different parameters.
*/
if (memcmp(jedec_id, cfg->jedec_id, sizeof(jedec_id)) != 0) {
LOG_ERR("Device id %02x %02x %02x does not match config %02x %02x %02x",
jedec_id[0], jedec_id[1], jedec_id[2],
cfg->jedec_id[0], cfg->jedec_id[1], cfg->jedec_id[2]);
return -EINVAL;
}
#endif
/* Check for block protect bits that need to be cleared. This
* information cannot be determined from SFDP content, so the
* devicetree node property must be set correctly for any device
* that powers up with block protect enabled.
*/
if (cfg->has_lock != 0) {
acquire_device(dev);
rc = spi_nor_rdsr(dev);
/* Only clear if RDSR worked and something's set. */
if (rc > 0) {
rc = spi_nor_wrsr(dev, rc & ~cfg->has_lock);
}
release_device(dev);
if (rc != 0) {
LOG_ERR("BP clear failed: %d\n", rc);
return -ENODEV;
}
}
#ifdef CONFIG_SPI_NOR_SFDP_MINIMAL
/* For minimal we support some overrides from specific
* devicertee properties.
*/
if (cfg->enter_4byte_addr != 0) {
rc = spi_nor_set_address_mode(dev, cfg->enter_4byte_addr);
if (rc != 0) {
LOG_ERR("Unable to enter 4-byte mode: %d\n", rc);
return -ENODEV;
}
}
#else /* CONFIG_SPI_NOR_SFDP_MINIMAL */
/* For devicetree and runtime we need to process BFP data and
* set up or validate page layout.
*/
rc = spi_nor_process_sfdp(dev);
if (rc != 0) {
LOG_ERR("SFDP read failed: %d", rc);
return -ENODEV;
}
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
rc = setup_pages_layout(dev);
if (rc != 0) {
LOG_ERR("layout setup failed: %d", rc);
return -ENODEV;
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
#endif /* CONFIG_SPI_NOR_SFDP_MINIMAL */
#if ANY_INST_HAS_MXICY_MX25R_POWER_MODE
if (cfg->mxicy_mx25r_power_mode_exist) {
/* Do not fail init if setting configuration register fails */
(void)mxicy_configure(dev, jedec_id);
}
#endif /* ANY_INST_HAS_MXICY_MX25R_POWER_MODE */
return 0;
}
static int spi_nor_pm_control(const struct device *dev, enum pm_device_action action)
{
int rc = 0;
switch (action) {
case PM_DEVICE_ACTION_SUSPEND:
acquire_device(dev);
rc = enter_dpd(dev);
release_device(dev);
break;
case PM_DEVICE_ACTION_RESUME:
acquire_device(dev);
rc = exit_dpd(dev);
release_device(dev);
break;
case PM_DEVICE_ACTION_TURN_ON:
/* Coming out of power off */
rc = spi_nor_configure(dev);
if (rc == 0) {
/* Move to DPD, the correct device state
* for PM_DEVICE_STATE_SUSPENDED
*/
acquire_device(dev);
rc = enter_dpd(dev);
release_device(dev);
}
break;
case PM_DEVICE_ACTION_TURN_OFF:
break;
default:
rc = -ENOSYS;
}
return rc;
}
/**
* @brief Initialize and configure the flash
*
* @param name The flash name
* @return 0 on success, negative errno code otherwise
*/
static int spi_nor_init(const struct device *dev)
{
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
struct spi_nor_data *const driver_data = dev->data;
k_sem_init(&driver_data->sem, 1, K_SEM_MAX_LIMIT);
}
#if ANY_INST_HAS_WP_GPIOS
if (DEV_CFG(dev)->wp_gpios_exist) {
if (!device_is_ready(DEV_CFG(dev)->wp.port)) {
LOG_ERR("Write-protect pin not ready");
return -ENODEV;
}
if (gpio_pin_configure_dt(&(DEV_CFG(dev)->wp), GPIO_OUTPUT_ACTIVE)) {
LOG_ERR("Write-protect pin failed to set active");
return -ENODEV;
}
}
#endif /* ANY_INST_HAS_WP_GPIOS */
#if ANY_INST_HAS_HOLD_GPIOS
if (DEV_CFG(dev)->hold_gpios_exist) {
if (!device_is_ready(DEV_CFG(dev)->hold.port)) {
LOG_ERR("Hold pin not ready");
return -ENODEV;
}
if (gpio_pin_configure_dt(&(DEV_CFG(dev)->hold), GPIO_OUTPUT_INACTIVE)) {
LOG_ERR("Hold pin failed to set inactive");
return -ENODEV;
}
}
#endif /* ANY_INST_HAS_HOLD_GPIOS */
return pm_device_driver_init(dev, spi_nor_pm_control);
}
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
static void spi_nor_pages_layout(const struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
/* Data for runtime, const for devicetree and minimal. */
#ifdef CONFIG_SPI_NOR_SFDP_RUNTIME
const struct spi_nor_data *data = dev->data;
*layout = &data->layout;
#else /* CONFIG_SPI_NOR_SFDP_RUNTIME */
const struct spi_nor_config *cfg = dev->config;
*layout = &cfg->layout;
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
*layout_size = 1;
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
static const struct flash_parameters *
flash_nor_get_parameters(const struct device *dev)
{
ARG_UNUSED(dev);
return &flash_nor_parameters;
}
static int flash_nor_get_size(const struct device *dev, uint64_t *size)
{
*size = (uint64_t)dev_flash_size(dev);
return 0;
}
static DEVICE_API(flash, spi_nor_api) = {
.read = spi_nor_read,
.write = spi_nor_write,
.erase = spi_nor_erase,
.get_parameters = flash_nor_get_parameters,
.get_size = flash_nor_get_size,
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
.page_layout = spi_nor_pages_layout,
#endif
#if defined(CONFIG_FLASH_JESD216_API)
.sfdp_read = spi_nor_sfdp_read,
.read_jedec_id = spi_nor_read_jedec_id,
#endif
#if defined(CONFIG_FLASH_EX_OP_ENABLED)
.ex_op = flash_spi_nor_ex_op,
#endif
};
#define PAGE_LAYOUT_GEN(idx) \
BUILD_ASSERT(DT_INST_NODE_HAS_PROP(idx, size), \
"jedec,spi-nor size required for non-runtime SFDP page layout"); \
enum { \
INST_##idx##_BYTES = (DT_INST_PROP(idx, size) / 8) \
}; \
BUILD_ASSERT(SPI_NOR_IS_SECTOR_ALIGNED(CONFIG_SPI_NOR_FLASH_LAYOUT_PAGE_SIZE), \
"SPI_NOR_FLASH_LAYOUT_PAGE_SIZE must be multiple of 4096"); \
enum { \
LAYOUT_PAGES_##idx##_COUNT = \
(INST_##idx##_BYTES / CONFIG_SPI_NOR_FLASH_LAYOUT_PAGE_SIZE) \
}; \
BUILD_ASSERT((CONFIG_SPI_NOR_FLASH_LAYOUT_PAGE_SIZE * LAYOUT_PAGES_##idx##_COUNT) == \
INST_##idx##_BYTES, \
"SPI_NOR_FLASH_LAYOUT_PAGE_SIZE incompatible with flash size");
#define SFDP_BFP_ATTR_GEN(idx) \
BUILD_ASSERT(DT_INST_NODE_HAS_PROP(idx, sfdp_bfp), \
"jedec,spi-nor sfdp-bfp required for devicetree SFDP"); \
static const __aligned(4) uint8_t bfp_##idx##_data[] = DT_INST_PROP(idx, sfdp_bfp);
#define INST_ATTR_GEN(idx) \
BUILD_ASSERT(DT_INST_NODE_HAS_PROP(idx, jedec_id), \
"jedec,spi-nor jedec-id required for non-runtime SFDP"); \
IF_ENABLED(CONFIG_FLASH_PAGE_LAYOUT, (PAGE_LAYOUT_GEN(idx))) \
IF_ENABLED(CONFIG_SPI_NOR_SFDP_DEVICETREE, (SFDP_BFP_ATTR_GEN(idx)))
#define ATTRIBUTES_DEFINE(idx) COND_CODE_1(CONFIG_SPI_NOR_SFDP_RUNTIME, EMPTY(), \
(INST_ATTR_GEN(idx)))
#define DEFINE_PAGE_LAYOUT(idx) \
IF_ENABLED(CONFIG_FLASH_PAGE_LAYOUT, \
(.layout = { \
.pages_count = LAYOUT_PAGES_##idx##_COUNT, \
.pages_size = CONFIG_SPI_NOR_FLASH_LAYOUT_PAGE_SIZE, \
},))
#define INST_HAS_LOCK(idx) DT_INST_NODE_HAS_PROP(idx, has_lock)
#define LOCK_DEFINE(idx) \
IF_ENABLED(INST_HAS_LOCK(idx), (BUILD_ASSERT(DT_INST_PROP(idx, has_lock) == \
(DT_INST_PROP(idx, has_lock) & 0xFF), \
"Need support for lock clear beyond SR1");))
#define CONFIGURE_4BYTE_ADDR(idx) .enter_4byte_addr = DT_INST_PROP_OR(idx, enter_4byte_addr, 0),
#define INIT_T_ENTER_DPD(idx) \
COND_CODE_1(DT_INST_NODE_HAS_PROP(idx, t_enter_dpd), \
(.t_enter_dpd = \
DIV_ROUND_UP(DT_INST_PROP(idx, t_enter_dpd), NSEC_PER_MSEC)),\
(.t_enter_dpd = 0))
#if ANY_INST_HAS_T_EXIT_DPD
#define INIT_T_EXIT_DPD(idx) \
COND_CODE_1( \
DT_INST_NODE_HAS_PROP(idx, t_exit_dpd), \
(.t_exit_dpd = DIV_ROUND_UP(DT_INST_PROP(idx, t_exit_dpd), NSEC_PER_MSEC)),\
(.t_exit_dpd = 0))
#endif
#define INIT_WP_GPIOS(idx) .wp = GPIO_DT_SPEC_INST_GET_OR(idx, wp_gpios, {0})
#define INIT_HOLD_GPIOS(idx) .hold = GPIO_DT_SPEC_INST_GET_OR(idx, hold_gpios, {0})
#define INIT_WAKEUP_SEQ_PARAMS(idx) \
COND_CODE_1(DT_INST_NODE_HAS_PROP(idx, dpd_wakeup_sequence), \
(.t_dpdd_ms = DIV_ROUND_UP( \
DT_INST_PROP_BY_IDX(idx, dpd_wakeup_sequence, 0), NSEC_PER_MSEC),\
.t_crdp_ms = DIV_ROUND_UP( \
DT_INST_PROP_BY_IDX(idx, dpd_wakeup_sequence, 1), NSEC_PER_MSEC),\
.t_rdp_ms = DIV_ROUND_UP( \
DT_INST_PROP_BY_IDX(idx, dpd_wakeup_sequence, 2), NSEC_PER_MSEC)),\
(.t_dpdd_ms = 0, .t_crdp_ms = 0, .t_rdp_ms = 0))
#define INIT_MXICY_MX25R_POWER_MODE(idx) \
.mxicy_mx25r_power_mode = DT_INST_ENUM_IDX_OR(idx, mxicy_mx25r_power_mode, 0)
#define INIT_RESET_GPIOS(idx) .reset = GPIO_DT_SPEC_INST_GET_OR(idx, reset_gpios, {0})
#define INST_CONFIG_STRUCT_GEN(idx) \
DEFINE_PAGE_LAYOUT(idx) \
.flash_size = DT_INST_PROP(idx, size) / 8, \
.jedec_id = DT_INST_PROP(idx, jedec_id), \
IF_ENABLED(CONFIG_SPI_NOR_SFDP_MINIMAL, (CONFIGURE_4BYTE_ADDR(idx))) \
IF_ENABLED(CONFIG_SPI_NOR_SFDP_DEVICETREE, \
(.bfp_len = sizeof(bfp_##idx##_data) / 4, \
.bfp = (const struct jesd216_bfp *)bfp_##idx##_data,))
#define GENERATE_CONFIG_STRUCT(idx) \
static const struct spi_nor_config spi_nor_##idx##_config = { \
.spi = SPI_DT_SPEC_INST_GET(idx, SPI_WORD_SET(8), CONFIG_SPI_NOR_CS_WAIT_DELAY),\
.dpd_exist = DT_INST_PROP(idx, has_dpd), \
.dpd_wakeup_sequence_exist = DT_INST_NODE_HAS_PROP(idx, dpd_wakeup_sequence), \
.mxicy_mx25r_power_mode_exist = \
DT_INST_NODE_HAS_PROP(idx, mxicy_mx25r_power_mode), \
.reset_gpios_exist = DT_INST_NODE_HAS_PROP(idx, reset_gpios), \
.requires_ulbpr_exist = DT_INST_PROP(idx, requires_ulbpr), \
.wp_gpios_exist = DT_INST_NODE_HAS_PROP(idx, wp_gpios), \
.hold_gpios_exist = DT_INST_NODE_HAS_PROP(idx, hold_gpios), \
.use_4b_addr_opcodes = DT_INST_PROP(idx, use_4b_addr_opcodes), \
.has_flsr = DT_INST_PROP(idx, use_flag_status_register), \
.use_fast_read = DT_INST_PROP(idx, use_fast_read), \
IF_ENABLED(INST_HAS_LOCK(idx), (.has_lock = DT_INST_PROP(idx, has_lock),)) \
IF_ENABLED(ANY_INST_HAS_DPD, (INIT_T_ENTER_DPD(idx),)) \
IF_ENABLED(UTIL_AND(ANY_INST_HAS_DPD, ANY_INST_HAS_T_EXIT_DPD), \
(INIT_T_EXIT_DPD(idx),)) \
IF_ENABLED(ANY_INST_HAS_DPD_WAKEUP_SEQUENCE, (INIT_WAKEUP_SEQ_PARAMS(idx),)) \
IF_ENABLED(ANY_INST_HAS_MXICY_MX25R_POWER_MODE, \
(INIT_MXICY_MX25R_POWER_MODE(idx),)) \
IF_ENABLED(ANY_INST_HAS_RESET_GPIOS, (INIT_RESET_GPIOS(idx),)) \
IF_ENABLED(ANY_INST_HAS_WP_GPIOS, (INIT_WP_GPIOS(idx),)) \
IF_ENABLED(ANY_INST_HAS_HOLD_GPIOS, (INIT_HOLD_GPIOS(idx),)) \
IF_DISABLED(CONFIG_SPI_NOR_SFDP_RUNTIME, (INST_CONFIG_STRUCT_GEN(idx)))};
#define ASSIGN_PM(idx) \
PM_DEVICE_DT_INST_DEFINE(idx, spi_nor_pm_control);
#define SPI_NOR_INST(idx) \
ASSIGN_PM(idx) \
ATTRIBUTES_DEFINE(idx) \
LOCK_DEFINE(idx) \
GENERATE_CONFIG_STRUCT(idx) \
static struct spi_nor_data spi_nor_##idx##_data; \
DEVICE_DT_INST_DEFINE(idx, &spi_nor_init, PM_DEVICE_DT_INST_GET(idx), \
&spi_nor_##idx##_data, &spi_nor_##idx##_config, \
POST_KERNEL, CONFIG_SPI_NOR_INIT_PRIORITY, &spi_nor_api);
DT_INST_FOREACH_STATUS_OKAY(SPI_NOR_INST)