accessing the stack below guard_end is always a bug. some
instrustions (like enter_s {r13-r26, fp, blink}) push a collection
of registers on to the stack. In this situation, the fault_addr will
less than guard_end, but sp will greater than guard_end.
|------stack base-------| <--- high address
| |
| | <--- sp
|------stack top--------|
|------guard_end--------|
| | <--- fault_addr
| |
|------guard_start------| <--- low address
So we need to remove the SP check. Trade-off here is if we prefer
'false' classifications of MPU stack guard area accesses as stack
error or as general mpu error. The faults get caught anyway, this is
just about classification: don't see a strong need for the extra check
to only report stack pointer accesses to guard area as stack error,
instead of all accesses.
Signed-off-by: Watson Zeng <zhiwei@synopsys.com>
414 lines
10 KiB
C
414 lines
10 KiB
C
/*
|
|
* Copyright (c) 2014 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Common fault handler for ARCv2
|
|
*
|
|
* Common fault handler for ARCv2 processors.
|
|
*/
|
|
|
|
#include <toolchain.h>
|
|
#include <linker/sections.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <kernel.h>
|
|
#include <kernel_internal.h>
|
|
#include <kernel_structs.h>
|
|
#include <exc_handle.h>
|
|
#include <logging/log.h>
|
|
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_EXC_DECLARE(z_arc_user_string_nlen);
|
|
|
|
static const struct z_exc_handle exceptions[] = {
|
|
Z_EXC_HANDLE(z_arc_user_string_nlen)
|
|
};
|
|
#endif
|
|
|
|
#if defined(CONFIG_MPU_STACK_GUARD)
|
|
/**
|
|
* @brief Assess occurrence of current thread's stack corruption
|
|
*
|
|
* This function performs an assessment whether a memory fault (on a given
|
|
* memory address) is the result of a stack overflow of the current thread.
|
|
*
|
|
* When called, we know at this point that we received an ARC
|
|
* protection violation, with any cause code, with the protection access
|
|
* error either "MPU" or "Secure MPU". In other words, an MPU fault of
|
|
* some kind. Need to determine whether this is a general MPU access
|
|
* exception or the specific case of a stack overflow.
|
|
*
|
|
* @param fault_addr memory address on which memory access violation
|
|
* has been reported.
|
|
* @param sp stack pointer when exception comes out
|
|
* @retval True if this appears to be a stack overflow
|
|
* @retval False if this does not appear to be a stack overflow
|
|
*/
|
|
static bool z_check_thread_stack_fail(const uint32_t fault_addr, uint32_t sp)
|
|
{
|
|
const struct k_thread *thread = _current;
|
|
uint32_t guard_end, guard_start;
|
|
|
|
if (!thread) {
|
|
/* TODO: Under what circumstances could we get here ? */
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
if ((thread->base.user_options & K_USER) != 0) {
|
|
if ((z_arc_v2_aux_reg_read(_ARC_V2_ERSTATUS) &
|
|
_ARC_V2_STATUS32_U) != 0) {
|
|
/* Normal user mode context. There is no specific
|
|
* "guard" installed in this case, instead what's
|
|
* happening is that the stack pointer is crashing
|
|
* into the privilege mode stack buffer which
|
|
* immediately precededs it.
|
|
*/
|
|
guard_end = thread->stack_info.start;
|
|
guard_start = (uint32_t)thread->stack_obj;
|
|
} else {
|
|
/* Special case: handling a syscall on privilege stack.
|
|
* There is guard memory reserved immediately before
|
|
* it.
|
|
*/
|
|
guard_end = thread->arch.priv_stack_start;
|
|
guard_start = guard_end - Z_ARC_STACK_GUARD_SIZE;
|
|
}
|
|
} else
|
|
#endif /* CONFIG_USERSPACE */
|
|
{
|
|
/* Supervisor thread */
|
|
guard_end = thread->stack_info.start;
|
|
guard_start = guard_end - Z_ARC_STACK_GUARD_SIZE;
|
|
}
|
|
|
|
/* treat any MPU exceptions within the guard region as a stack
|
|
* overflow.As some instrustions
|
|
* (like enter_s {r13-r26, fp, blink}) push a collection of
|
|
* registers on to the stack. In this situation, the fault_addr
|
|
* will less than guard_end, but sp will greater than guard_end.
|
|
*/
|
|
if (fault_addr < guard_end && fault_addr >= guard_start) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARC_EXCEPTION_DEBUG
|
|
/* For EV_ProtV, the numbering/semantics of the parameter are consistent across
|
|
* several codes, although not all combination will be reported.
|
|
*
|
|
* These codes and parameters do not have associated* names in
|
|
* the technical manual, just switch on the values in Table 6-5
|
|
*/
|
|
static const char *get_protv_access_err(uint32_t parameter)
|
|
{
|
|
switch (parameter) {
|
|
case 0x1:
|
|
return "code protection scheme";
|
|
case 0x2:
|
|
return "stack checking scheme";
|
|
case 0x4:
|
|
return "MPU";
|
|
case 0x8:
|
|
return "MMU";
|
|
case 0x10:
|
|
return "NVM";
|
|
case 0x24:
|
|
return "Secure MPU";
|
|
case 0x44:
|
|
return "Secure MPU with SID mismatch";
|
|
default:
|
|
return "unknown";
|
|
}
|
|
}
|
|
|
|
static void dump_protv_exception(uint32_t cause, uint32_t parameter)
|
|
{
|
|
switch (cause) {
|
|
case 0x0:
|
|
LOG_ERR("Instruction fetch violation (%s)",
|
|
get_protv_access_err(parameter));
|
|
break;
|
|
case 0x1:
|
|
LOG_ERR("Memory read protection violation (%s)",
|
|
get_protv_access_err(parameter));
|
|
break;
|
|
case 0x2:
|
|
LOG_ERR("Memory write protection violation (%s)",
|
|
get_protv_access_err(parameter));
|
|
break;
|
|
case 0x3:
|
|
LOG_ERR("Memory read-modify-write violation (%s)",
|
|
get_protv_access_err(parameter));
|
|
break;
|
|
case 0x10:
|
|
LOG_ERR("Normal vector table in secure memory");
|
|
break;
|
|
case 0x11:
|
|
LOG_ERR("NS handler code located in S memory");
|
|
break;
|
|
case 0x12:
|
|
LOG_ERR("NSC Table Range Violation");
|
|
break;
|
|
default:
|
|
LOG_ERR("unknown");
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void dump_machine_check_exception(uint32_t cause, uint32_t parameter)
|
|
{
|
|
switch (cause) {
|
|
case 0x0:
|
|
LOG_ERR("double fault");
|
|
break;
|
|
case 0x1:
|
|
LOG_ERR("overlapping TLB entries");
|
|
break;
|
|
case 0x2:
|
|
LOG_ERR("fatal TLB error");
|
|
break;
|
|
case 0x3:
|
|
LOG_ERR("fatal cache error");
|
|
break;
|
|
case 0x4:
|
|
LOG_ERR("internal memory error on instruction fetch");
|
|
break;
|
|
case 0x5:
|
|
LOG_ERR("internal memory error on data fetch");
|
|
break;
|
|
case 0x6:
|
|
LOG_ERR("illegal overlapping MPU entries");
|
|
if (parameter == 0x1) {
|
|
LOG_ERR(" - jump and branch target");
|
|
}
|
|
break;
|
|
case 0x10:
|
|
LOG_ERR("secure vector table not located in secure memory");
|
|
break;
|
|
case 0x11:
|
|
LOG_ERR("NSC jump table not located in secure memory");
|
|
break;
|
|
case 0x12:
|
|
LOG_ERR("secure handler code not located in secure memory");
|
|
break;
|
|
case 0x13:
|
|
LOG_ERR("NSC target address not located in secure memory");
|
|
break;
|
|
case 0x80:
|
|
LOG_ERR("uncorrectable ECC or parity error in vector memory");
|
|
break;
|
|
default:
|
|
LOG_ERR("unknown");
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void dump_privilege_exception(uint32_t cause, uint32_t parameter)
|
|
{
|
|
switch (cause) {
|
|
case 0x0:
|
|
LOG_ERR("Privilege violation");
|
|
break;
|
|
case 0x1:
|
|
LOG_ERR("disabled extension");
|
|
break;
|
|
case 0x2:
|
|
LOG_ERR("action point hit");
|
|
break;
|
|
case 0x10:
|
|
switch (parameter) {
|
|
case 0x1:
|
|
LOG_ERR("N to S return using incorrect return mechanism");
|
|
break;
|
|
case 0x2:
|
|
LOG_ERR("N to S return with incorrect operating mode");
|
|
break;
|
|
case 0x3:
|
|
LOG_ERR("IRQ/exception return fetch from wrong mode");
|
|
break;
|
|
case 0x4:
|
|
LOG_ERR("attempt to halt secure processor in NS mode");
|
|
break;
|
|
case 0x20:
|
|
LOG_ERR("attempt to access secure resource from normal mode");
|
|
break;
|
|
case 0x40:
|
|
LOG_ERR("SID violation on resource access (APEX/UAUX/key NVM)");
|
|
break;
|
|
default:
|
|
LOG_ERR("unknown");
|
|
break;
|
|
}
|
|
break;
|
|
case 0x13:
|
|
switch (parameter) {
|
|
case 0x20:
|
|
LOG_ERR("attempt to access secure APEX feature from NS mode");
|
|
break;
|
|
case 0x40:
|
|
LOG_ERR("SID violation on access to APEX feature");
|
|
break;
|
|
default:
|
|
LOG_ERR("unknown");
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
LOG_ERR("unknown");
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void dump_exception_info(uint32_t vector, uint32_t cause, uint32_t parameter)
|
|
{
|
|
if (vector >= 0x10 && vector <= 0xFF) {
|
|
LOG_ERR("interrupt %u", vector);
|
|
return;
|
|
}
|
|
|
|
/* Names are exactly as they appear in Designware ARCv2 ISA
|
|
* Programmer's reference manual for easy searching
|
|
*/
|
|
switch (vector) {
|
|
case ARC_EV_RESET:
|
|
LOG_ERR("Reset");
|
|
break;
|
|
case ARC_EV_MEM_ERROR:
|
|
LOG_ERR("Memory Error");
|
|
break;
|
|
case ARC_EV_INS_ERROR:
|
|
LOG_ERR("Instruction Error");
|
|
break;
|
|
case ARC_EV_MACHINE_CHECK:
|
|
LOG_ERR("EV_MachineCheck");
|
|
dump_machine_check_exception(cause, parameter);
|
|
break;
|
|
case ARC_EV_TLB_MISS_I:
|
|
LOG_ERR("EV_TLBMissI");
|
|
break;
|
|
case ARC_EV_TLB_MISS_D:
|
|
LOG_ERR("EV_TLBMissD");
|
|
break;
|
|
case ARC_EV_PROT_V:
|
|
LOG_ERR("EV_ProtV");
|
|
dump_protv_exception(cause, parameter);
|
|
break;
|
|
case ARC_EV_PRIVILEGE_V:
|
|
LOG_ERR("EV_PrivilegeV");
|
|
dump_privilege_exception(cause, parameter);
|
|
break;
|
|
case ARC_EV_SWI:
|
|
LOG_ERR("EV_SWI");
|
|
break;
|
|
case ARC_EV_TRAP:
|
|
LOG_ERR("EV_Trap");
|
|
break;
|
|
case ARC_EV_EXTENSION:
|
|
LOG_ERR("EV_Extension");
|
|
break;
|
|
case ARC_EV_DIV_ZERO:
|
|
LOG_ERR("EV_DivZero");
|
|
break;
|
|
case ARC_EV_DC_ERROR:
|
|
LOG_ERR("EV_DCError");
|
|
break;
|
|
case ARC_EV_MISALIGNED:
|
|
LOG_ERR("EV_Misaligned");
|
|
break;
|
|
case ARC_EV_VEC_UNIT:
|
|
LOG_ERR("EV_VecUnit");
|
|
break;
|
|
default:
|
|
LOG_ERR("unknown");
|
|
break;
|
|
}
|
|
}
|
|
#endif /* CONFIG_ARC_EXCEPTION_DEBUG */
|
|
|
|
/*
|
|
* @brief Fault handler
|
|
*
|
|
* This routine is called when fatal error conditions are detected by hardware
|
|
* and is responsible only for reporting the error. Once reported, it then
|
|
* invokes the user provided routine k_sys_fatal_error_handler() which is
|
|
* responsible for implementing the error handling policy.
|
|
*/
|
|
void _Fault(z_arch_esf_t *esf, uint32_t old_sp)
|
|
{
|
|
uint32_t vector, cause, parameter;
|
|
uint32_t exc_addr = z_arc_v2_aux_reg_read(_ARC_V2_EFA);
|
|
uint32_t ecr = z_arc_v2_aux_reg_read(_ARC_V2_ECR);
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
for (int i = 0; i < ARRAY_SIZE(exceptions); i++) {
|
|
uint32_t start = (uint32_t)exceptions[i].start;
|
|
uint32_t end = (uint32_t)exceptions[i].end;
|
|
|
|
if (esf->pc >= start && esf->pc < end) {
|
|
esf->pc = (uint32_t)(exceptions[i].fixup);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
vector = Z_ARC_V2_ECR_VECTOR(ecr);
|
|
cause = Z_ARC_V2_ECR_CODE(ecr);
|
|
parameter = Z_ARC_V2_ECR_PARAMETER(ecr);
|
|
|
|
/* exception raised by kernel */
|
|
if (vector == ARC_EV_TRAP && parameter == _TRAP_S_CALL_RUNTIME_EXCEPT) {
|
|
/*
|
|
* in user mode software-triggered system fatal exceptions only allow
|
|
* K_ERR_KERNEL_OOPS and K_ERR_STACK_CHK_FAIL
|
|
*/
|
|
#ifdef CONFIG_USERSPACE
|
|
if ((esf->status32 & _ARC_V2_STATUS32_U) &&
|
|
esf->r0 != K_ERR_STACK_CHK_FAIL) {
|
|
esf->r0 = K_ERR_KERNEL_OOPS;
|
|
}
|
|
#endif
|
|
|
|
z_arc_fatal_error(esf->r0, esf);
|
|
return;
|
|
}
|
|
|
|
LOG_ERR("***** Exception vector: 0x%x, cause code: 0x%x, parameter 0x%x",
|
|
vector, cause, parameter);
|
|
LOG_ERR("Address 0x%x", exc_addr);
|
|
#ifdef CONFIG_ARC_EXCEPTION_DEBUG
|
|
dump_exception_info(vector, cause, parameter);
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARC_STACK_CHECKING
|
|
/* Vector 6 = EV_ProV. Regardless of cause, parameter 2 means stack
|
|
* check violation
|
|
* stack check and mpu violation can come out together, then
|
|
* parameter = 0x2 | [0x4 | 0x8 | 0x1]
|
|
*/
|
|
if (vector == ARC_EV_PROT_V && parameter & 0x2) {
|
|
z_arc_fatal_error(K_ERR_STACK_CHK_FAIL, esf);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MPU_STACK_GUARD
|
|
if (vector == ARC_EV_PROT_V && ((parameter == 0x4) ||
|
|
(parameter == 0x24))) {
|
|
if (z_check_thread_stack_fail(exc_addr, old_sp)) {
|
|
z_arc_fatal_error(K_ERR_STACK_CHK_FAIL, esf);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
z_arc_fatal_error(K_ERR_CPU_EXCEPTION, esf);
|
|
}
|