This test case was taking a (traditional) irq_lock(), which masks interrupts, and then calling k_mutex_lock() with a timeout of K_FOREVER, which is a blocking call. That's not legal, because it will obviously schedule other threads to run in a context where the code was promised it would not. This used to be an uncaught error, but now we have an assertion that catches this. It's not clear what this test case is supposed to be testing, as the behavior is actually identical to the release_global_lock case except for the (incorrect) addition of the irq_lock(). If this is needed for code coverage we can work to figure out the real root cause of the missing coverage later. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
976 lines
23 KiB
C
976 lines
23 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <zephyr.h>
|
|
#include <tc_util.h>
|
|
#include <ztest.h>
|
|
#include <kernel.h>
|
|
#include <ksched.h>
|
|
#include <kernel_structs.h>
|
|
|
|
#if CONFIG_MP_NUM_CPUS < 2
|
|
#error SMP test requires at least two CPUs!
|
|
#endif
|
|
|
|
#define T2_STACK_SIZE (2048 + CONFIG_TEST_EXTRA_STACKSIZE)
|
|
#define STACK_SIZE (384 + CONFIG_TEST_EXTRA_STACKSIZE)
|
|
#define DELAY_US 50000
|
|
#define TIMEOUT 1000
|
|
#define EQUAL_PRIORITY 1
|
|
#define TIME_SLICE_MS 500
|
|
#define THREAD_DELAY 1
|
|
|
|
struct k_thread t2;
|
|
K_THREAD_STACK_DEFINE(t2_stack, T2_STACK_SIZE);
|
|
|
|
volatile int t2_count;
|
|
volatile int sync_count = -1;
|
|
|
|
static int main_thread_id;
|
|
static int child_thread_id;
|
|
volatile int rv;
|
|
|
|
K_SEM_DEFINE(cpuid_sema, 0, 1);
|
|
K_SEM_DEFINE(sema, 0, 1);
|
|
static struct k_mutex smutex;
|
|
static struct k_sem smp_sem;
|
|
|
|
#define THREADS_NUM CONFIG_MP_NUM_CPUS
|
|
|
|
struct thread_info {
|
|
k_tid_t tid;
|
|
int executed;
|
|
int priority;
|
|
int cpu_id;
|
|
};
|
|
static ZTEST_BMEM volatile struct thread_info tinfo[THREADS_NUM];
|
|
static struct k_thread tthread[THREADS_NUM];
|
|
static K_THREAD_STACK_ARRAY_DEFINE(tstack, THREADS_NUM, STACK_SIZE);
|
|
|
|
static volatile int thread_started[THREADS_NUM - 1];
|
|
|
|
static int curr_cpu(void)
|
|
{
|
|
unsigned int k = arch_irq_lock();
|
|
int ret = arch_curr_cpu()->id;
|
|
|
|
arch_irq_unlock(k);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Tests for SMP
|
|
* @defgroup kernel_smp_tests SMP Tests
|
|
* @ingroup all_tests
|
|
* @{
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @defgroup kernel_smp_integration_tests SMP Tests
|
|
* @ingroup all_tests
|
|
* @{
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @defgroup kernel_smp_module_tests SMP Tests
|
|
* @ingroup all_tests
|
|
* @{
|
|
* @}
|
|
*/
|
|
|
|
static void t2_fn(void *a, void *b, void *c)
|
|
{
|
|
ARG_UNUSED(a);
|
|
ARG_UNUSED(b);
|
|
ARG_UNUSED(c);
|
|
|
|
t2_count = 0;
|
|
|
|
/* This thread simply increments a counter while spinning on
|
|
* the CPU. The idea is that it will always be iterating
|
|
* faster than the other thread so long as it is fairly
|
|
* scheduled (and it's designed to NOT be fairly schedulable
|
|
* without a separate CPU!), so the main thread can always
|
|
* check its progress.
|
|
*/
|
|
while (1) {
|
|
k_busy_wait(DELAY_US);
|
|
t2_count++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Verify SMP with 2 cooperative threads
|
|
*
|
|
* @ingroup kernel_smp_tests
|
|
*
|
|
* @details Multi processing is verified by checking whether
|
|
* 2 cooperative threads run simultaneously at different cores
|
|
*/
|
|
void test_smp_coop_threads(void)
|
|
{
|
|
int i, ok = 1;
|
|
|
|
k_tid_t tid = k_thread_create(&t2, t2_stack, T2_STACK_SIZE, t2_fn,
|
|
NULL, NULL, NULL,
|
|
K_PRIO_COOP(2), 0, K_NO_WAIT);
|
|
|
|
/* Wait for the other thread (on a separate CPU) to actually
|
|
* start running. We want synchrony to be as perfect as
|
|
* possible.
|
|
*/
|
|
t2_count = -1;
|
|
while (t2_count == -1) {
|
|
}
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
/* Wait slightly longer than the other thread so our
|
|
* count will always be lower
|
|
*/
|
|
k_busy_wait(DELAY_US + (DELAY_US / 8));
|
|
|
|
if (t2_count <= i) {
|
|
ok = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
k_thread_abort(tid);
|
|
zassert_true(ok, "SMP test failed");
|
|
}
|
|
|
|
static void child_fn(void *p1, void *p2, void *p3)
|
|
{
|
|
ARG_UNUSED(p2);
|
|
ARG_UNUSED(p3);
|
|
int parent_cpu_id = POINTER_TO_INT(p1);
|
|
|
|
zassert_true(parent_cpu_id != curr_cpu(),
|
|
"Parent isn't on other core");
|
|
|
|
sync_count++;
|
|
k_sem_give(&cpuid_sema);
|
|
}
|
|
|
|
/**
|
|
* @brief Verify CPU IDs of threads in SMP
|
|
*
|
|
* @ingroup kernel_smp_tests
|
|
*
|
|
* @details Verify whether thread running on other core is
|
|
* parent thread from child thread
|
|
*/
|
|
void test_cpu_id_threads(void)
|
|
{
|
|
/* Make sure idle thread runs on each core */
|
|
k_sleep(K_MSEC(1000));
|
|
|
|
int parent_cpu_id = curr_cpu();
|
|
|
|
k_tid_t tid = k_thread_create(&t2, t2_stack, T2_STACK_SIZE, child_fn,
|
|
INT_TO_POINTER(parent_cpu_id), NULL,
|
|
NULL, K_PRIO_PREEMPT(2), 0, K_NO_WAIT);
|
|
|
|
while (sync_count == -1) {
|
|
}
|
|
k_sem_take(&cpuid_sema, K_FOREVER);
|
|
|
|
k_thread_abort(tid);
|
|
}
|
|
|
|
static void thread_entry(void *p1, void *p2, void *p3)
|
|
{
|
|
ARG_UNUSED(p2);
|
|
ARG_UNUSED(p3);
|
|
int thread_num = POINTER_TO_INT(p1);
|
|
int count = 0;
|
|
|
|
tinfo[thread_num].executed = 1;
|
|
tinfo[thread_num].cpu_id = curr_cpu();
|
|
|
|
while (count++ < 5) {
|
|
k_busy_wait(DELAY_US);
|
|
}
|
|
}
|
|
|
|
static void spin_for_threads_exit(void)
|
|
{
|
|
for (int i = 0; i < THREADS_NUM - 1; i++) {
|
|
volatile uint8_t *p = &tinfo[i].tid->base.thread_state;
|
|
|
|
while (!(*p & _THREAD_DEAD)) {
|
|
}
|
|
}
|
|
k_busy_wait(DELAY_US);
|
|
}
|
|
|
|
static void spawn_threads(int prio, int thread_num, int equal_prio,
|
|
k_thread_entry_t thread_entry, int delay)
|
|
{
|
|
int i;
|
|
|
|
/* Spawn threads of priority higher than
|
|
* the previously created thread
|
|
*/
|
|
for (i = 0; i < thread_num; i++) {
|
|
if (equal_prio) {
|
|
tinfo[i].priority = prio;
|
|
} else {
|
|
/* Increase priority for each thread */
|
|
tinfo[i].priority = prio - 1;
|
|
prio = tinfo[i].priority;
|
|
}
|
|
tinfo[i].tid = k_thread_create(&tthread[i], tstack[i],
|
|
STACK_SIZE, thread_entry,
|
|
INT_TO_POINTER(i), NULL, NULL,
|
|
tinfo[i].priority, 0,
|
|
K_MSEC(delay));
|
|
if (delay) {
|
|
/* Increase delay for each thread */
|
|
delay = delay + 10;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void abort_threads(int num)
|
|
{
|
|
for (int i = 0; i < num; i++) {
|
|
k_thread_abort(tinfo[i].tid);
|
|
}
|
|
}
|
|
|
|
static void cleanup_resources(void)
|
|
{
|
|
for (int i = 0; i < THREADS_NUM; i++) {
|
|
tinfo[i].tid = 0;
|
|
tinfo[i].executed = 0;
|
|
tinfo[i].priority = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Test cooperative threads non-preemption
|
|
*
|
|
* @ingroup kernel_smp_tests
|
|
*
|
|
* @details Spawn cooperative threads equal to number of cores
|
|
* supported. Main thread will already be running on 1 core.
|
|
* Check if the last thread created preempts any threads
|
|
* already running.
|
|
*/
|
|
void test_coop_resched_threads(void)
|
|
{
|
|
/* Spawn threads equal to number of cores,
|
|
* since we don't give up current CPU, last thread
|
|
* will not get scheduled
|
|
*/
|
|
spawn_threads(K_PRIO_COOP(10), THREADS_NUM, !EQUAL_PRIORITY,
|
|
&thread_entry, THREAD_DELAY);
|
|
|
|
/* Wait for some time to let other core's thread run */
|
|
k_busy_wait(DELAY_US);
|
|
|
|
|
|
/* Reassure that cooperative thread's are not preempted
|
|
* by checking last thread's execution
|
|
* status. We know that all threads got rescheduled on
|
|
* other cores except the last one
|
|
*/
|
|
for (int i = 0; i < THREADS_NUM - 1; i++) {
|
|
zassert_true(tinfo[i].executed == 1,
|
|
"cooperative thread %d didn't run", i);
|
|
}
|
|
zassert_true(tinfo[THREADS_NUM - 1].executed == 0,
|
|
"cooperative thread is preempted");
|
|
|
|
/* Abort threads created */
|
|
abort_threads(THREADS_NUM);
|
|
cleanup_resources();
|
|
}
|
|
|
|
/**
|
|
* @brief Test preemptness of preemptive thread
|
|
*
|
|
* @ingroup kernel_smp_tests
|
|
*
|
|
* @details Create preemptive thread and let it run
|
|
* on another core and verify if it gets preempted
|
|
* if another thread of higher priority is spawned
|
|
*/
|
|
void test_preempt_resched_threads(void)
|
|
{
|
|
/* Spawn threads equal to number of cores,
|
|
* lower priority thread should
|
|
* be preempted by higher ones
|
|
*/
|
|
spawn_threads(K_PRIO_PREEMPT(10), THREADS_NUM, !EQUAL_PRIORITY,
|
|
&thread_entry, THREAD_DELAY);
|
|
|
|
spin_for_threads_exit();
|
|
|
|
for (int i = 0; i < THREADS_NUM; i++) {
|
|
zassert_true(tinfo[i].executed == 1,
|
|
"preemptive thread %d didn't run", i);
|
|
}
|
|
|
|
/* Abort threads created */
|
|
abort_threads(THREADS_NUM);
|
|
cleanup_resources();
|
|
}
|
|
|
|
/**
|
|
* @brief Validate behavior of thread when it yields
|
|
*
|
|
* @ingroup kernel_smp_tests
|
|
*
|
|
* @details Spawn cooperative threads equal to number
|
|
* of cores, so last thread would be pending, call
|
|
* yield() from main thread. Now, all threads must be
|
|
* executed
|
|
*/
|
|
void test_yield_threads(void)
|
|
{
|
|
/* Spawn threads equal to the number
|
|
* of cores, so the last thread would be
|
|
* pending.
|
|
*/
|
|
spawn_threads(K_PRIO_COOP(10), THREADS_NUM, !EQUAL_PRIORITY,
|
|
&thread_entry, !THREAD_DELAY);
|
|
|
|
k_yield();
|
|
k_busy_wait(DELAY_US);
|
|
|
|
for (int i = 0; i < THREADS_NUM; i++) {
|
|
zassert_true(tinfo[i].executed == 1,
|
|
"thread %d did not execute", i);
|
|
|
|
}
|
|
|
|
abort_threads(THREADS_NUM);
|
|
cleanup_resources();
|
|
}
|
|
|
|
/**
|
|
* @brief Test behavior of thread when it sleeps
|
|
*
|
|
* @ingroup kernel_smp_tests
|
|
*
|
|
* @details Spawn cooperative thread and call
|
|
* sleep() from main thread. After timeout, all
|
|
* threads has to be scheduled.
|
|
*/
|
|
void test_sleep_threads(void)
|
|
{
|
|
spawn_threads(K_PRIO_COOP(10), THREADS_NUM, !EQUAL_PRIORITY,
|
|
&thread_entry, !THREAD_DELAY);
|
|
|
|
k_msleep(TIMEOUT);
|
|
|
|
for (int i = 0; i < THREADS_NUM; i++) {
|
|
zassert_true(tinfo[i].executed == 1,
|
|
"thread %d did not execute", i);
|
|
}
|
|
|
|
abort_threads(THREADS_NUM);
|
|
cleanup_resources();
|
|
}
|
|
|
|
static void thread_wakeup_entry(void *p1, void *p2, void *p3)
|
|
{
|
|
ARG_UNUSED(p2);
|
|
ARG_UNUSED(p3);
|
|
int thread_num = POINTER_TO_INT(p1);
|
|
|
|
thread_started[thread_num] = 1;
|
|
|
|
k_msleep(DELAY_US * 1000);
|
|
|
|
tinfo[thread_num].executed = 1;
|
|
}
|
|
|
|
static void wakeup_on_start_thread(int tnum)
|
|
{
|
|
int threads_started = 0, i;
|
|
|
|
/* For each thread, spin waiting for it to first flag that
|
|
* it's going to sleep, and then that it's actually blocked
|
|
*/
|
|
for (i = 0; i < tnum; i++) {
|
|
while (thread_started[i] == 0) {
|
|
}
|
|
while (!z_is_thread_prevented_from_running(tinfo[i].tid)) {
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < tnum; i++) {
|
|
if (thread_started[i] == 1 && threads_started <= tnum) {
|
|
threads_started++;
|
|
k_wakeup(tinfo[i].tid);
|
|
}
|
|
}
|
|
zassert_equal(threads_started, tnum,
|
|
"All threads haven't started");
|
|
}
|
|
|
|
static void check_wokeup_threads(int tnum)
|
|
{
|
|
int threads_woke_up = 0, i;
|
|
|
|
/* k_wakeup() isn't synchronous, give the other CPU time to
|
|
* schedule them
|
|
*/
|
|
k_busy_wait(200000);
|
|
|
|
for (i = 0; i < tnum; i++) {
|
|
if (tinfo[i].executed == 1 && threads_woke_up <= tnum) {
|
|
threads_woke_up++;
|
|
}
|
|
}
|
|
zassert_equal(threads_woke_up, tnum, "Threads did not wakeup");
|
|
}
|
|
|
|
/**
|
|
* @brief Test behavior of wakeup() in SMP case
|
|
*
|
|
* @ingroup kernel_smp_tests
|
|
*
|
|
* @details Spawn number of threads equal to number of
|
|
* remaining cores and let them sleep for a while. Call
|
|
* wakeup() of those threads from parent thread and check
|
|
* if they are all running
|
|
*/
|
|
void test_wakeup_threads(void)
|
|
{
|
|
/* Spawn threads to run on all remaining cores */
|
|
spawn_threads(K_PRIO_COOP(10), THREADS_NUM - 1, !EQUAL_PRIORITY,
|
|
&thread_wakeup_entry, !THREAD_DELAY);
|
|
|
|
/* Check if all the threads have started, then call wakeup */
|
|
wakeup_on_start_thread(THREADS_NUM - 1);
|
|
|
|
/* Count threads which are woken up */
|
|
check_wokeup_threads(THREADS_NUM - 1);
|
|
|
|
/* Abort all threads and cleanup */
|
|
abort_threads(THREADS_NUM - 1);
|
|
cleanup_resources();
|
|
}
|
|
|
|
/* a thread for testing get current cpu */
|
|
static void thread_get_cpu_entry(void *p1, void *p2, void *p3)
|
|
{
|
|
int bsp_id = *(int *)p1;
|
|
int cpu_id = -1;
|
|
|
|
/* get current cpu number for running thread */
|
|
_cpu_t *curr_cpu = arch_curr_cpu();
|
|
|
|
/**TESTPOINT: call arch_curr_cpu() to get cpu struct */
|
|
zassert_true(curr_cpu != NULL,
|
|
"test failed to get current cpu.");
|
|
|
|
cpu_id = curr_cpu->id;
|
|
|
|
zassert_true(bsp_id != cpu_id,
|
|
"should not be the same with our BSP");
|
|
|
|
/* loop forever to ensure running on this CPU */
|
|
while (1) {
|
|
k_busy_wait(DELAY_US);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Test get a pointer of CPU
|
|
*
|
|
* @ingroup kernel_smp_module_tests
|
|
*
|
|
* @details
|
|
* Test Objective:
|
|
* - To verify architecture layer provides a mechanism to return a pointer to the
|
|
* current kernel CPU record of the running CPU.
|
|
* We call arch_curr_cpu() and get it's member, both in main and spwaned thread
|
|
* speratively, and compare them. They shall be different in SMP enviornment.
|
|
*
|
|
* Testing techniques:
|
|
* - Interface testing, function and block box testing,
|
|
* dynamic analysis and testing,
|
|
*
|
|
* Prerequisite Conditions:
|
|
* - CONFIG_SMP=y, and the HW platform must support SMP.
|
|
*
|
|
* Input Specifications:
|
|
* - N/A
|
|
*
|
|
* Test Procedure:
|
|
* -# In main thread, call arch_curr_cpu() to get it's member "id",then store it
|
|
* into a variable thread_id.
|
|
* -# Spawn a thread t2, and pass the stored thread_id to it, then call
|
|
* k_busy_wait() 50us to wait for thread run and won't be swapped out.
|
|
* -# In thread t2, call arch_curr_cpu() to get pointer of current cpu data. Then
|
|
* check if it not NULL.
|
|
* -# Store the member id via accessing pointer of current cpu data to var cpu_id.
|
|
* -# Check if cpu_id is not equaled to bsp_id that we pass into thread.
|
|
* -# Call k_busy_wait() and loop forever.
|
|
* -# In main thread, terminate the thread t2 before exit.
|
|
*
|
|
* Expected Test Result:
|
|
* - The pointer of current cpu data that we got from function call is correct.
|
|
*
|
|
* Pass/Fail Criteria:
|
|
* - Successful if the check of step 3,5 are all passed.
|
|
* - Failure if one of the check of step 3,5 is failed.
|
|
*
|
|
* Assumptions and Constraints:
|
|
* - This test using for the platform that support SMP, in our current scenario
|
|
* , only x86_64, arc and xtensa supported.
|
|
*
|
|
* @see arch_curr_cpu()
|
|
*/
|
|
void test_get_cpu(void)
|
|
{
|
|
k_tid_t thread_id;
|
|
|
|
/* get current cpu number */
|
|
int cpu_id = arch_curr_cpu()->id;
|
|
|
|
thread_id = k_thread_create(&t2, t2_stack, T2_STACK_SIZE,
|
|
(k_thread_entry_t)thread_get_cpu_entry,
|
|
&cpu_id, NULL, NULL,
|
|
K_PRIO_COOP(2),
|
|
K_INHERIT_PERMS, K_NO_WAIT);
|
|
|
|
k_busy_wait(DELAY_US);
|
|
|
|
k_thread_abort(thread_id);
|
|
}
|
|
|
|
#ifdef CONFIG_TRACE_SCHED_IPI
|
|
/* global variable for testing send IPI */
|
|
static volatile int sched_ipi_has_called;
|
|
|
|
void z_trace_sched_ipi(void)
|
|
{
|
|
sched_ipi_has_called++;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @brief Test interprocessor interrupt
|
|
*
|
|
* @ingroup kernel_smp_integration_tests
|
|
*
|
|
* @details
|
|
* Test Objective:
|
|
* - To verify architecture layer provides a mechanism to issue an interprocessor
|
|
* interrupt to all other CPUs in the system that calls the scheduler IPI.
|
|
* We simply add a hook in z_sched_ipi(), in order to check if it has been
|
|
* called once in another CPU except the caller, when arch_sched_ipi() is
|
|
* called.
|
|
*
|
|
* Testing techniques:
|
|
* - Interface testing, function and block box testing,
|
|
* dynamic analysis and testing
|
|
*
|
|
* Prerequisite Conditions:
|
|
* - CONFIG_SMP=y, and the HW platform must support SMP.
|
|
* - CONFIG_TRACE_SCHED_IPI=y was set.
|
|
*
|
|
* Input Specifications:
|
|
* - N/A
|
|
*
|
|
* Test Procedure:
|
|
* -# In main thread, given a global variable sched_ipi_has_called equaled zero.
|
|
* -# Call arch_sched_ipi() then sleep for 100ms.
|
|
* -# In z_sched_ipi() handler, increment the sched_ipi_has_called.
|
|
* -# In main thread, check the sched_ipi_has_called is not equaled to zero.
|
|
* -# Repeat step 1 to 4 for 3 times.
|
|
*
|
|
* Expected Test Result:
|
|
* - The pointer of current cpu data that we got from function call is correct.
|
|
*
|
|
* Pass/Fail Criteria:
|
|
* - Successful if the check of step 4 are all passed.
|
|
* - Failure if one of the check of step 4 is failed.
|
|
*
|
|
* Assumptions and Constraints:
|
|
* - This test using for the platform that support SMP, in our current scenario
|
|
* , only x86_64 and arc supported.
|
|
*
|
|
* @see arch_sched_ipi()
|
|
*/
|
|
void test_smp_ipi(void)
|
|
{
|
|
#ifndef CONFIG_TRACE_SCHED_IPI
|
|
ztest_test_skip();
|
|
#endif
|
|
|
|
TC_PRINT("cpu num=%d", CONFIG_MP_NUM_CPUS);
|
|
|
|
for (int i = 0; i < 3 ; i++) {
|
|
/* issue a sched ipi to tell other CPU to run thread */
|
|
sched_ipi_has_called = 0;
|
|
arch_sched_ipi();
|
|
|
|
/* Need to wait longer than we think, loaded CI
|
|
* systems need to wait for host scheduling to run the
|
|
* other CPU's thread.
|
|
*/
|
|
k_msleep(100);
|
|
|
|
/**TESTPOINT: check if enter our IPI interrupt handler */
|
|
zassert_true(sched_ipi_has_called != 0,
|
|
"did not receive IPI.(%d)",
|
|
sched_ipi_has_called);
|
|
}
|
|
}
|
|
|
|
void k_sys_fatal_error_handler(unsigned int reason, const z_arch_esf_t *pEsf)
|
|
{
|
|
static int trigger;
|
|
|
|
if (reason != K_ERR_KERNEL_OOPS) {
|
|
printk("wrong error reason\n");
|
|
k_fatal_halt(reason);
|
|
}
|
|
|
|
if (trigger == 0) {
|
|
child_thread_id = curr_cpu();
|
|
trigger++;
|
|
} else {
|
|
main_thread_id = curr_cpu();
|
|
|
|
/* Verify the fatal was happened on different core */
|
|
zassert_true(main_thread_id != child_thread_id,
|
|
"fatal on the same core");
|
|
}
|
|
}
|
|
|
|
void entry_oops(void *p1, void *p2, void *p3)
|
|
{
|
|
k_oops();
|
|
TC_ERROR("SHOULD NEVER SEE THIS\n");
|
|
}
|
|
|
|
/**
|
|
* @brief Test fatal error can be triggered on different core
|
|
|
|
* @details When CONFIG_SMP is enabled, on some multiprocessor
|
|
* platforms, exception can be triggered on different core at
|
|
* the same time.
|
|
*
|
|
* @ingroup kernel_common_tests
|
|
*/
|
|
void test_fatal_on_smp(void)
|
|
{
|
|
/* Creat a child thread and trigger a crash */
|
|
k_thread_create(&t2, t2_stack, T2_STACK_SIZE, entry_oops,
|
|
NULL, NULL, NULL,
|
|
K_PRIO_PREEMPT(2), 0, K_NO_WAIT);
|
|
|
|
/* hold cpu and wait for thread trigger exception */
|
|
k_busy_wait(2000);
|
|
|
|
/* Manually trigger the crash in mainthread */
|
|
entry_oops(NULL, NULL, NULL);
|
|
|
|
/* should not be here */
|
|
ztest_test_fail();
|
|
}
|
|
|
|
static void workq_handler(struct k_work *work)
|
|
{
|
|
child_thread_id = curr_cpu();
|
|
}
|
|
|
|
/**
|
|
* @brief Test system workq run on different core
|
|
|
|
* @details When macro CONFIG_SMP is enabled, workq can be run
|
|
* on different core.
|
|
*
|
|
* @ingroup kernel_common_tests
|
|
*/
|
|
void test_workq_on_smp(void)
|
|
{
|
|
static struct k_work work;
|
|
|
|
k_work_init(&work, workq_handler);
|
|
|
|
/* submit work item on system workq */
|
|
k_work_submit(&work);
|
|
|
|
/* Wait for some time to let other core's thread run */
|
|
k_busy_wait(DELAY_US);
|
|
|
|
/* check work have finished */
|
|
zassert_equal(k_work_busy_get(&work), 0, NULL);
|
|
|
|
main_thread_id = curr_cpu();
|
|
|
|
/* Verify the ztest thread and system workq run on different core */
|
|
zassert_true(main_thread_id != child_thread_id,
|
|
"system workq run on the same core");
|
|
}
|
|
|
|
static void t1_mutex_lock(void *p1, void *p2, void *p3)
|
|
{
|
|
/* t1 will get mutex first */
|
|
k_mutex_lock((struct k_mutex *)p1, K_FOREVER);
|
|
|
|
k_msleep(2);
|
|
|
|
k_mutex_unlock((struct k_mutex *)p1);
|
|
}
|
|
|
|
static void t2_mutex_lock(void *p1, void *p2, void *p3)
|
|
{
|
|
zassert_equal(_current->base.global_lock_count, 0,
|
|
"thread global lock cnt %d is incorrect",
|
|
_current->base.global_lock_count);
|
|
|
|
k_mutex_lock((struct k_mutex *)p1, K_FOREVER);
|
|
|
|
zassert_equal(_current->base.global_lock_count, 0,
|
|
"thread global lock cnt %d is incorrect",
|
|
_current->base.global_lock_count);
|
|
|
|
k_mutex_unlock((struct k_mutex *)p1);
|
|
|
|
/**TESTPOINT: z_smp_release_global_lock() has been call during
|
|
* context switch but global_lock_cnt has not been decrease
|
|
* because no irq_lock() was called.
|
|
*/
|
|
zassert_equal(_current->base.global_lock_count, 0,
|
|
"thread global lock cnt %d is incorrect",
|
|
_current->base.global_lock_count);
|
|
}
|
|
|
|
/**
|
|
* @brief Test scenairo that a thread release the global lock
|
|
*
|
|
* @ingroup kernel_smp_tests
|
|
*
|
|
* @details Validate the scenario that make the internal APIs of SMP
|
|
* z_smp_release_global_lock() to be called.
|
|
*/
|
|
void test_smp_release_global_lock(void)
|
|
{
|
|
k_mutex_init(&smutex);
|
|
|
|
tinfo[0].tid =
|
|
k_thread_create(&tthread[0], tstack[0], STACK_SIZE,
|
|
(k_thread_entry_t)t1_mutex_lock,
|
|
&smutex, NULL, NULL,
|
|
K_PRIO_PREEMPT(5),
|
|
K_INHERIT_PERMS, K_NO_WAIT);
|
|
|
|
tinfo[1].tid =
|
|
k_thread_create(&tthread[1], tstack[1], STACK_SIZE,
|
|
(k_thread_entry_t)t2_mutex_lock,
|
|
&smutex, NULL, NULL,
|
|
K_PRIO_PREEMPT(3),
|
|
K_INHERIT_PERMS, K_MSEC(1));
|
|
|
|
/* Hold one of the cpu to ensure context switch as we wanted
|
|
* can happen in another cpu.
|
|
*/
|
|
k_busy_wait(20000);
|
|
|
|
k_thread_join(tinfo[1].tid, K_FOREVER);
|
|
k_thread_join(tinfo[0].tid, K_FOREVER);
|
|
cleanup_resources();
|
|
}
|
|
|
|
#define LOOP_COUNT 20000
|
|
|
|
enum sync_t {
|
|
LOCK_IRQ,
|
|
LOCK_SEM,
|
|
LOCK_MUTEX
|
|
};
|
|
|
|
static int global_cnt;
|
|
static struct k_mutex smp_mutex;
|
|
|
|
static void (*sync_lock)(void *);
|
|
static void (*sync_unlock)(void *);
|
|
|
|
static void sync_lock_dummy(void *k)
|
|
{
|
|
/* no sync lock used */
|
|
}
|
|
|
|
static void sync_lock_irq(void *k)
|
|
{
|
|
*((unsigned int *)k) = irq_lock();
|
|
}
|
|
|
|
static void sync_unlock_irq(void *k)
|
|
{
|
|
irq_unlock(*(unsigned int *)k);
|
|
}
|
|
|
|
static void sync_lock_sem(void *k)
|
|
{
|
|
k_sem_take(&smp_sem, K_FOREVER);
|
|
}
|
|
|
|
static void sync_unlock_sem(void *k)
|
|
{
|
|
k_sem_give(&smp_sem);
|
|
}
|
|
|
|
static void sync_lock_mutex(void *k)
|
|
{
|
|
k_mutex_lock(&smp_mutex, K_FOREVER);
|
|
}
|
|
|
|
static void sync_unlock_mutex(void *k)
|
|
{
|
|
k_mutex_unlock(&smp_mutex);
|
|
}
|
|
|
|
static void sync_init(int lock_type)
|
|
{
|
|
switch (lock_type) {
|
|
case LOCK_IRQ:
|
|
sync_lock = sync_lock_irq;
|
|
sync_unlock = sync_unlock_irq;
|
|
break;
|
|
case LOCK_SEM:
|
|
sync_lock = sync_lock_sem;
|
|
sync_unlock = sync_unlock_sem;
|
|
k_sem_init(&smp_sem, 1, 3);
|
|
break;
|
|
case LOCK_MUTEX:
|
|
sync_lock = sync_lock_mutex;
|
|
sync_unlock = sync_unlock_mutex;
|
|
k_mutex_init(&smp_mutex);
|
|
break;
|
|
|
|
default:
|
|
sync_lock = sync_unlock = sync_lock_dummy;
|
|
}
|
|
}
|
|
|
|
static void inc_global_cnt(void *a, void *b, void *c)
|
|
{
|
|
int key;
|
|
|
|
for (int i = 0; i < LOOP_COUNT; i++) {
|
|
|
|
sync_lock(&key);
|
|
|
|
global_cnt++;
|
|
global_cnt--;
|
|
global_cnt++;
|
|
|
|
sync_unlock(&key);
|
|
}
|
|
}
|
|
|
|
static int run_concurrency(int type, void *func)
|
|
{
|
|
uint32_t start_t, end_t;
|
|
|
|
sync_init(type);
|
|
global_cnt = 0;
|
|
start_t = k_cycle_get_32();
|
|
|
|
tinfo[0].tid =
|
|
k_thread_create(&tthread[0], tstack[0], STACK_SIZE,
|
|
(k_thread_entry_t)func,
|
|
NULL, NULL, NULL,
|
|
K_PRIO_PREEMPT(1),
|
|
K_INHERIT_PERMS, K_NO_WAIT);
|
|
|
|
tinfo[1].tid =
|
|
k_thread_create(&tthread[1], tstack[1], STACK_SIZE,
|
|
(k_thread_entry_t)func,
|
|
NULL, NULL, NULL,
|
|
K_PRIO_PREEMPT(1),
|
|
K_INHERIT_PERMS, K_NO_WAIT);
|
|
|
|
k_tid_t tid =
|
|
k_thread_create(&t2, t2_stack, T2_STACK_SIZE,
|
|
(k_thread_entry_t)func,
|
|
NULL, NULL, NULL,
|
|
K_PRIO_PREEMPT(1),
|
|
K_INHERIT_PERMS, K_NO_WAIT);
|
|
|
|
k_thread_join(tinfo[0].tid, K_FOREVER);
|
|
k_thread_join(tinfo[1].tid, K_FOREVER);
|
|
k_thread_join(tid, K_FOREVER);
|
|
cleanup_resources();
|
|
|
|
end_t = k_cycle_get_32();
|
|
|
|
printk("type %d: cnt %d, spend %u ms\n", type, global_cnt,
|
|
k_cyc_to_ms_ceil32(end_t - start_t));
|
|
|
|
return global_cnt == (LOOP_COUNT * 3);
|
|
}
|
|
|
|
/**
|
|
* @brief Test if the concurrency of SMP works or not
|
|
*
|
|
* @ingroup kernel_smp_tests
|
|
*
|
|
* @details Validate the global lock and unlock API of SMP are thread-safe.
|
|
* We make 3 thread to increase the global count in differenet cpu and
|
|
* they both do locking then unlocking for LOOP_COUNT times. It shall be no
|
|
* deadlock happened and total global count shall be 3 * LOOP COUNT.
|
|
*
|
|
* We show the 4 kinds of scenairo:
|
|
* - No any lock used
|
|
* - Use global irq lock
|
|
* - Use semaphore
|
|
* - Use mutex
|
|
*/
|
|
void test_inc_concurrency(void)
|
|
{
|
|
/* increasing global var with irq lock */
|
|
zassert_true(run_concurrency(LOCK_IRQ, inc_global_cnt),
|
|
"total count %d is wrong(i)", global_cnt);
|
|
|
|
/* increasing global var with irq lock */
|
|
zassert_true(run_concurrency(LOCK_SEM, inc_global_cnt),
|
|
"total count %d is wrong(s)", global_cnt);
|
|
|
|
/* increasing global var with irq lock */
|
|
zassert_true(run_concurrency(LOCK_MUTEX, inc_global_cnt),
|
|
"total count %d is wrong(M)", global_cnt);
|
|
}
|
|
|
|
void test_main(void)
|
|
{
|
|
/* Sleep a bit to guarantee that both CPUs enter an idle
|
|
* thread from which they can exit correctly to run the main
|
|
* test.
|
|
*/
|
|
k_sleep(K_MSEC(10));
|
|
|
|
ztest_test_suite(smp,
|
|
ztest_unit_test(test_smp_coop_threads),
|
|
ztest_unit_test(test_cpu_id_threads),
|
|
ztest_unit_test(test_coop_resched_threads),
|
|
ztest_unit_test(test_preempt_resched_threads),
|
|
ztest_unit_test(test_yield_threads),
|
|
ztest_unit_test(test_sleep_threads),
|
|
ztest_unit_test(test_wakeup_threads),
|
|
ztest_unit_test(test_smp_ipi),
|
|
ztest_unit_test(test_get_cpu),
|
|
ztest_unit_test(test_fatal_on_smp),
|
|
ztest_unit_test(test_workq_on_smp),
|
|
ztest_unit_test(test_smp_release_global_lock),
|
|
ztest_unit_test(test_inc_concurrency)
|
|
);
|
|
ztest_run_test_suite(smp);
|
|
}
|