There are issues using lowercase min and max macros when compiling a C++ application with a third-party toolchain such as GNU ARM Embedded when using some STL headers i.e. <chrono>. This is because there are actual C++ functions called min and max defined in some of the STL headers and these macros interfere with them. By changing the macros to UPPERCASE, which is consistent with almost all other pre-processor macros this naming conflict is avoided. All files that use these macros have been updated. Signed-off-by: Carlos Stuart <carlosstuart1970@gmail.com>
136 lines
3.2 KiB
C
136 lines
3.2 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include <drivers/system_timer.h>
|
|
#include <sys_clock.h>
|
|
#include <spinlock.h>
|
|
#include <soc.h>
|
|
|
|
#define CYC_PER_TICK ((u32_t)((u64_t)CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC \
|
|
/ (u64_t)CONFIG_SYS_CLOCK_TICKS_PER_SEC))
|
|
#define MAX_TICKS ((0xffffffffu - CYC_PER_TICK) / CYC_PER_TICK)
|
|
#define MIN_DELAY 1000
|
|
|
|
#define TICKLESS (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && \
|
|
!IS_ENABLED(CONFIG_QEMU_TICKLESS_WORKAROUND))
|
|
|
|
static struct k_spinlock lock;
|
|
static u64_t last_count;
|
|
|
|
static void set_mtimecmp(u64_t time)
|
|
{
|
|
volatile u32_t *r = (u32_t *)RISCV_MTIMECMP_BASE;
|
|
|
|
/* Per spec, the RISC-V MTIME/MTIMECMP registers are 64 bit,
|
|
* but are NOT internally latched for multiword transfers. So
|
|
* we have to be careful about sequencing to avoid triggering
|
|
* spurious interrupts: always set the high word to a max
|
|
* value first.
|
|
*/
|
|
r[1] = 0xffffffff;
|
|
r[0] = (u32_t)time;
|
|
r[1] = (u32_t)(time >> 32);
|
|
}
|
|
|
|
static u64_t mtime(void)
|
|
{
|
|
volatile u32_t *r = (u32_t *)RISCV_MTIME_BASE;
|
|
u32_t lo, hi;
|
|
|
|
/* Likewise, must guard against rollover when reading */
|
|
do {
|
|
hi = r[1];
|
|
lo = r[0];
|
|
} while (r[1] != hi);
|
|
|
|
return (((u64_t)hi) << 32) | lo;
|
|
}
|
|
|
|
static void timer_isr(void *arg)
|
|
{
|
|
ARG_UNUSED(arg);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
u64_t now = mtime();
|
|
u32_t dticks = (u32_t)((now - last_count) / CYC_PER_TICK);
|
|
|
|
last_count += dticks * CYC_PER_TICK;
|
|
|
|
if (!TICKLESS) {
|
|
u64_t next = last_count + CYC_PER_TICK;
|
|
|
|
if ((s64_t)(next - now) < MIN_DELAY) {
|
|
next += CYC_PER_TICK;
|
|
}
|
|
set_mtimecmp(next);
|
|
}
|
|
|
|
k_spin_unlock(&lock, key);
|
|
z_clock_announce(dticks);
|
|
}
|
|
|
|
int z_clock_driver_init(struct device *device)
|
|
{
|
|
IRQ_CONNECT(RISCV_MACHINE_TIMER_IRQ, 0, timer_isr, NULL, 0);
|
|
set_mtimecmp(mtime() + CYC_PER_TICK);
|
|
irq_enable(RISCV_MACHINE_TIMER_IRQ);
|
|
return 0;
|
|
}
|
|
|
|
void z_clock_set_timeout(s32_t ticks, bool idle)
|
|
{
|
|
ARG_UNUSED(idle);
|
|
|
|
#if defined(CONFIG_TICKLESS_KERNEL) && !defined(CONFIG_QEMU_TICKLESS_WORKAROUND)
|
|
/* RISCV has no idle handler yet, so if we try to spin on the
|
|
* logic below to reset the comparator, we'll always bump it
|
|
* forward to the "next tick" due to MIN_DELAY handling and
|
|
* the interrupt will never fire! Just rely on the fact that
|
|
* the OS gave us the proper timeout already.
|
|
*/
|
|
if (idle) {
|
|
return;
|
|
}
|
|
|
|
ticks = ticks == K_FOREVER ? MAX_TICKS : ticks;
|
|
ticks = MAX(MIN(ticks - 1, (s32_t)MAX_TICKS), 0);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
u64_t now = mtime();
|
|
u32_t cyc = ticks * CYC_PER_TICK;
|
|
|
|
/* Round up to next tick boundary. Note use of 32 bit math,
|
|
* max_ticks is calibrated to permit this.
|
|
*/
|
|
cyc += (u32_t)(now - last_count) + (CYC_PER_TICK - 1);
|
|
cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK;
|
|
|
|
if ((s32_t)(cyc + last_count - now) < MIN_DELAY) {
|
|
cyc += CYC_PER_TICK;
|
|
}
|
|
|
|
set_mtimecmp(cyc + last_count);
|
|
k_spin_unlock(&lock, key);
|
|
#endif
|
|
}
|
|
|
|
u32_t z_clock_elapsed(void)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
return 0;
|
|
}
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
u32_t ret = ((u32_t)mtime() - (u32_t)last_count) / CYC_PER_TICK;
|
|
|
|
k_spin_unlock(&lock, key);
|
|
return ret;
|
|
}
|
|
|
|
u32_t _timer_cycle_get_32(void)
|
|
{
|
|
return (u32_t)mtime();
|
|
}
|