System call arguments, at the arch layer, are single words. So passing wider values requires splitting them into two registers at call time. This gets even more complicated for values (e.g k_timeout_t) that may have different sizes depending on configuration. This patch adds a feature to gen_syscalls.py to detect functions with wide arguments and automatically generates code to split/unsplit them. Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't work with functions like this, because for N arguments (our current maximum N is 10) there are 2^N possible configurations of argument widths. So this generates the complete functions for each handler and wrapper, effectively doing in python what was originally done in the preprocessor. Another complexity is that traditional the z_hdlr_*() function for a system call has taken the raw list of word arguments, which does not work when some of those arguments must be 64 bit types. So instead of using a single Z_SYSCALL_HANDLER macro, this splits the job of z_hdlr_*() into two steps: An automatically-generated unmarshalling function, z_mrsh_*(), which then calls a user-supplied verification function z_vrfy_*(). The verification function is typesafe, and is a simple C function with exactly the same argument and return signature as the syscall impl function. It is also not responsible for validating the pointers to the extra parameter array or a wide return value, that code gets automatically generated. This commit includes new vrfy/msrh handling for all syscalls invoked during CI runs. Future commits will port the less testable code. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
377 lines
8.9 KiB
C
377 lines
8.9 KiB
C
/*
|
|
* Copyright (c) 2010-2016 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
*
|
|
* @brief dynamic-size QUEUE object.
|
|
*/
|
|
|
|
|
|
#include <kernel.h>
|
|
#include <kernel_structs.h>
|
|
#include <debug/object_tracing_common.h>
|
|
#include <toolchain.h>
|
|
#include <linker/sections.h>
|
|
#include <wait_q.h>
|
|
#include <ksched.h>
|
|
#include <sys/sflist.h>
|
|
#include <init.h>
|
|
#include <syscall_handler.h>
|
|
#include <kernel_internal.h>
|
|
|
|
struct alloc_node {
|
|
sys_sfnode_t node;
|
|
void *data;
|
|
};
|
|
|
|
void *z_queue_node_peek(sys_sfnode_t *node, bool needs_free)
|
|
{
|
|
void *ret;
|
|
|
|
if ((node != NULL) && (sys_sfnode_flags_get(node) != (u8_t)0)) {
|
|
/* If the flag is set, then the enqueue operation for this item
|
|
* did a behind-the scenes memory allocation of an alloc_node
|
|
* struct, which is what got put in the queue. Free it and pass
|
|
* back the data pointer.
|
|
*/
|
|
struct alloc_node *anode;
|
|
|
|
anode = CONTAINER_OF(node, struct alloc_node, node);
|
|
ret = anode->data;
|
|
if (needs_free) {
|
|
k_free(anode);
|
|
}
|
|
} else {
|
|
/* Data was directly placed in the queue, the first word
|
|
* reserved for the linked list. User mode isn't allowed to
|
|
* do this, although it can get data sent this way.
|
|
*/
|
|
ret = (void *)node;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_OBJECT_TRACING
|
|
|
|
struct k_queue *_trace_list_k_queue;
|
|
|
|
/*
|
|
* Complete initialization of statically defined queues.
|
|
*/
|
|
static int init_queue_module(struct device *dev)
|
|
{
|
|
ARG_UNUSED(dev);
|
|
|
|
Z_STRUCT_SECTION_FOREACH(k_queue, queue) {
|
|
SYS_TRACING_OBJ_INIT(k_queue, queue);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
SYS_INIT(init_queue_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
|
|
|
|
#endif /* CONFIG_OBJECT_TRACING */
|
|
|
|
void z_impl_k_queue_init(struct k_queue *queue)
|
|
{
|
|
sys_sflist_init(&queue->data_q);
|
|
queue->lock = (struct k_spinlock) {};
|
|
z_waitq_init(&queue->wait_q);
|
|
#if defined(CONFIG_POLL)
|
|
sys_dlist_init(&queue->poll_events);
|
|
#endif
|
|
|
|
SYS_TRACING_OBJ_INIT(k_queue, queue);
|
|
z_object_init(queue);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_queue_init(struct k_queue *queue)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(queue, K_OBJ_QUEUE));
|
|
z_impl_k_queue_init(queue);
|
|
}
|
|
#include <syscalls/k_queue_init_mrsh.c>
|
|
#endif
|
|
|
|
#if !defined(CONFIG_POLL)
|
|
static void prepare_thread_to_run(struct k_thread *thread, void *data)
|
|
{
|
|
z_ready_thread(thread);
|
|
z_set_thread_return_value_with_data(thread, 0, data);
|
|
}
|
|
#endif /* CONFIG_POLL */
|
|
|
|
#ifdef CONFIG_POLL
|
|
static inline void handle_poll_events(struct k_queue *queue, u32_t state)
|
|
{
|
|
z_handle_obj_poll_events(&queue->poll_events, state);
|
|
}
|
|
#endif
|
|
|
|
void z_impl_k_queue_cancel_wait(struct k_queue *queue)
|
|
{
|
|
k_spinlock_key_t key = k_spin_lock(&queue->lock);
|
|
#if !defined(CONFIG_POLL)
|
|
struct k_thread *first_pending_thread;
|
|
|
|
first_pending_thread = z_unpend_first_thread(&queue->wait_q);
|
|
|
|
if (first_pending_thread != NULL) {
|
|
prepare_thread_to_run(first_pending_thread, NULL);
|
|
}
|
|
#else
|
|
handle_poll_events(queue, K_POLL_STATE_CANCELLED);
|
|
#endif /* !CONFIG_POLL */
|
|
|
|
z_reschedule(&queue->lock, key);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_queue_cancel_wait(struct k_queue *queue)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(queue, K_OBJ_QUEUE));
|
|
z_impl_k_queue_cancel_wait(queue);
|
|
}
|
|
#include <syscalls/k_queue_cancel_wait_mrsh.c>
|
|
#endif
|
|
|
|
static s32_t queue_insert(struct k_queue *queue, void *prev, void *data,
|
|
bool alloc)
|
|
{
|
|
k_spinlock_key_t key = k_spin_lock(&queue->lock);
|
|
#if !defined(CONFIG_POLL)
|
|
struct k_thread *first_pending_thread;
|
|
|
|
first_pending_thread = z_unpend_first_thread(&queue->wait_q);
|
|
|
|
if (first_pending_thread != NULL) {
|
|
prepare_thread_to_run(first_pending_thread, data);
|
|
z_reschedule(&queue->lock, key);
|
|
return 0;
|
|
}
|
|
#endif /* !CONFIG_POLL */
|
|
|
|
/* Only need to actually allocate if no threads are pending */
|
|
if (alloc) {
|
|
struct alloc_node *anode;
|
|
|
|
anode = z_thread_malloc(sizeof(*anode));
|
|
if (anode == NULL) {
|
|
k_spin_unlock(&queue->lock, key);
|
|
return -ENOMEM;
|
|
}
|
|
anode->data = data;
|
|
sys_sfnode_init(&anode->node, 0x1);
|
|
data = anode;
|
|
} else {
|
|
sys_sfnode_init(data, 0x0);
|
|
}
|
|
sys_sflist_insert(&queue->data_q, prev, data);
|
|
|
|
#if defined(CONFIG_POLL)
|
|
handle_poll_events(queue, K_POLL_STATE_DATA_AVAILABLE);
|
|
#endif /* CONFIG_POLL */
|
|
|
|
z_reschedule(&queue->lock, key);
|
|
return 0;
|
|
}
|
|
|
|
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
|
|
{
|
|
(void)queue_insert(queue, prev, data, false);
|
|
}
|
|
|
|
void k_queue_append(struct k_queue *queue, void *data)
|
|
{
|
|
(void)queue_insert(queue, sys_sflist_peek_tail(&queue->data_q),
|
|
data, false);
|
|
}
|
|
|
|
void k_queue_prepend(struct k_queue *queue, void *data)
|
|
{
|
|
(void)queue_insert(queue, NULL, data, false);
|
|
}
|
|
|
|
s32_t z_impl_k_queue_alloc_append(struct k_queue *queue, void *data)
|
|
{
|
|
return queue_insert(queue, sys_sflist_peek_tail(&queue->data_q), data,
|
|
true);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline s32_t z_vrfy_k_queue_alloc_append(struct k_queue *queue, void *data)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(queue, K_OBJ_QUEUE));
|
|
return z_impl_k_queue_alloc_append(queue, data);
|
|
}
|
|
#include <syscalls/k_queue_alloc_append_mrsh.c>
|
|
#endif
|
|
|
|
s32_t z_impl_k_queue_alloc_prepend(struct k_queue *queue, void *data)
|
|
{
|
|
return queue_insert(queue, NULL, data, true);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline s32_t z_vrfy_k_queue_alloc_prepend(struct k_queue *queue, void *data)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(queue, K_OBJ_QUEUE));
|
|
return z_impl_k_queue_alloc_prepend(queue, data);
|
|
}
|
|
#include <syscalls/k_queue_alloc_prepend_mrsh.c>
|
|
#endif
|
|
|
|
void k_queue_append_list(struct k_queue *queue, void *head, void *tail)
|
|
{
|
|
__ASSERT(head && tail, "invalid head or tail");
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&queue->lock);
|
|
#if !defined(CONFIG_POLL)
|
|
struct k_thread *thread = NULL;
|
|
|
|
if (head != NULL) {
|
|
thread = z_unpend_first_thread(&queue->wait_q);
|
|
}
|
|
|
|
while ((head != NULL) && (thread != NULL)) {
|
|
prepare_thread_to_run(thread, head);
|
|
head = *(void **)head;
|
|
thread = z_unpend_first_thread(&queue->wait_q);
|
|
}
|
|
|
|
if (head != NULL) {
|
|
sys_sflist_append_list(&queue->data_q, head, tail);
|
|
}
|
|
|
|
#else
|
|
sys_sflist_append_list(&queue->data_q, head, tail);
|
|
handle_poll_events(queue, K_POLL_STATE_DATA_AVAILABLE);
|
|
#endif /* !CONFIG_POLL */
|
|
|
|
z_reschedule(&queue->lock, key);
|
|
}
|
|
|
|
void k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
|
|
{
|
|
__ASSERT(!sys_slist_is_empty(list), "list must not be empty");
|
|
|
|
/*
|
|
* note: this works as long as:
|
|
* - the slist implementation keeps the next pointer as the first
|
|
* field of the node object type
|
|
* - list->tail->next = NULL.
|
|
* - sflist implementation only differs from slist by stuffing
|
|
* flag bytes in the lower order bits of the data pointer
|
|
* - source list is really an slist and not an sflist with flags set
|
|
*/
|
|
k_queue_append_list(queue, list->head, list->tail);
|
|
sys_slist_init(list);
|
|
}
|
|
|
|
#if defined(CONFIG_POLL)
|
|
static void *k_queue_poll(struct k_queue *queue, s32_t timeout)
|
|
{
|
|
struct k_poll_event event;
|
|
int err, elapsed = 0, done = 0;
|
|
k_spinlock_key_t key;
|
|
void *val;
|
|
u32_t start;
|
|
|
|
k_poll_event_init(&event, K_POLL_TYPE_FIFO_DATA_AVAILABLE,
|
|
K_POLL_MODE_NOTIFY_ONLY, queue);
|
|
|
|
if (timeout != K_FOREVER) {
|
|
start = k_uptime_get_32();
|
|
}
|
|
|
|
do {
|
|
event.state = K_POLL_STATE_NOT_READY;
|
|
|
|
err = k_poll(&event, 1, timeout - elapsed);
|
|
|
|
if (err && err != -EAGAIN) {
|
|
return NULL;
|
|
}
|
|
|
|
key = k_spin_lock(&queue->lock);
|
|
val = z_queue_node_peek(sys_sflist_get(&queue->data_q), true);
|
|
k_spin_unlock(&queue->lock, key);
|
|
|
|
if ((val == NULL) && (timeout != K_FOREVER)) {
|
|
elapsed = k_uptime_get_32() - start;
|
|
done = elapsed > timeout;
|
|
}
|
|
} while (!val && !done);
|
|
|
|
return val;
|
|
}
|
|
#endif /* CONFIG_POLL */
|
|
|
|
void *z_impl_k_queue_get(struct k_queue *queue, s32_t timeout)
|
|
{
|
|
k_spinlock_key_t key = k_spin_lock(&queue->lock);
|
|
void *data;
|
|
|
|
if (likely(!sys_sflist_is_empty(&queue->data_q))) {
|
|
sys_sfnode_t *node;
|
|
|
|
node = sys_sflist_get_not_empty(&queue->data_q);
|
|
data = z_queue_node_peek(node, true);
|
|
k_spin_unlock(&queue->lock, key);
|
|
return data;
|
|
}
|
|
|
|
if (timeout == K_NO_WAIT) {
|
|
k_spin_unlock(&queue->lock, key);
|
|
return NULL;
|
|
}
|
|
|
|
#if defined(CONFIG_POLL)
|
|
k_spin_unlock(&queue->lock, key);
|
|
|
|
return k_queue_poll(queue, timeout);
|
|
|
|
#else
|
|
int ret = z_pend_curr(&queue->lock, key, &queue->wait_q, timeout);
|
|
|
|
return (ret != 0) ? NULL : _current->base.swap_data;
|
|
#endif /* CONFIG_POLL */
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void *z_vrfy_k_queue_get(struct k_queue *queue, s32_t timeout)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(queue, K_OBJ_QUEUE));
|
|
return z_impl_k_queue_get(queue, timeout);
|
|
}
|
|
#include <syscalls/k_queue_get_mrsh.c>
|
|
|
|
static inline int z_vrfy_k_queue_is_empty(struct k_queue *queue)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(queue, K_OBJ_QUEUE));
|
|
return z_impl_k_queue_is_empty(queue);
|
|
}
|
|
#include <syscalls/k_queue_is_empty_mrsh.c>
|
|
|
|
static inline void *z_vrfy_k_queue_peek_head(struct k_queue *queue)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(queue, K_OBJ_QUEUE));
|
|
return z_impl_k_queue_peek_head(queue);
|
|
}
|
|
#include <syscalls/k_queue_peek_head_mrsh.c>
|
|
|
|
static inline void *z_vrfy_k_queue_peek_tail(struct k_queue *queue)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(queue, K_OBJ_QUEUE));
|
|
return z_impl_k_queue_peek_tail(queue);
|
|
}
|
|
#include <syscalls/k_queue_peek_tail_mrsh.c>
|
|
|
|
#endif /* CONFIG_USERSPACE */
|