zephyr/subsys/pm/pm.c
Mahesh Mahadevan 6cb1ff6560 pm: Move settting timeout to after suspending devices
pm_suspend_devices() could return an error. Set timeout using
sys_clock_set_timeout() to after this error is handled so that
we have the accurate power state when calling the timeout function.
This is useful in cases where we wish to compensate the
system timer for certain power modes.

Signed-off-by: Mahesh Mahadevan <mahesh.mahadevan@nxp.com>
2023-12-18 09:29:49 +01:00

284 lines
7.6 KiB
C

/*
* Copyright (c) 2018 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/kernel.h>
#include <zephyr/kernel_structs.h>
#include <zephyr/init.h>
#include <string.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
#include <zephyr/pm/pm.h>
#include <zephyr/pm/state.h>
#include <zephyr/pm/policy.h>
#include <zephyr/tracing/tracing.h>
#include "pm_stats.h"
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(pm, CONFIG_PM_LOG_LEVEL);
#define CURRENT_CPU \
(COND_CODE_1(CONFIG_SMP, (arch_curr_cpu()->id), (_current_cpu->id)))
static ATOMIC_DEFINE(z_post_ops_required, CONFIG_MP_MAX_NUM_CPUS);
static sys_slist_t pm_notifiers = SYS_SLIST_STATIC_INIT(&pm_notifiers);
/*
* Properly initialize cpu power states. Do not make assumptions that
* ACTIVE_STATE is 0
*/
#define CPU_PM_STATE_INIT(_, __) \
{ .state = PM_STATE_ACTIVE }
static struct pm_state_info z_cpus_pm_state[] = {
LISTIFY(CONFIG_MP_MAX_NUM_CPUS, CPU_PM_STATE_INIT, (,))
};
static struct pm_state_info z_cpus_pm_forced_state[] = {
LISTIFY(CONFIG_MP_MAX_NUM_CPUS, CPU_PM_STATE_INIT, (,))
};
static struct k_spinlock pm_forced_state_lock;
static struct k_spinlock pm_notifier_lock;
#ifdef CONFIG_PM_DEVICE
TYPE_SECTION_START_EXTERN(const struct device *, pm_device_slots);
#if !defined(CONFIG_PM_DEVICE_RUNTIME_EXCLUSIVE)
/* Number of devices successfully suspended. */
static size_t num_susp;
static int pm_suspend_devices(void)
{
const struct device *devs;
size_t devc;
devc = z_device_get_all_static(&devs);
num_susp = 0;
for (const struct device *dev = devs + devc - 1; dev >= devs; dev--) {
int ret;
/*
* Ignore uninitialized devices, busy devices, wake up sources, and
* devices with runtime PM enabled.
*/
if (!device_is_ready(dev) || pm_device_is_busy(dev) ||
pm_device_state_is_locked(dev) ||
pm_device_wakeup_is_enabled(dev) ||
pm_device_runtime_is_enabled(dev)) {
continue;
}
ret = pm_device_action_run(dev, PM_DEVICE_ACTION_SUSPEND);
/* ignore devices not supporting or already at the given state */
if ((ret == -ENOSYS) || (ret == -ENOTSUP) || (ret == -EALREADY)) {
continue;
} else if (ret < 0) {
LOG_ERR("Device %s did not enter %s state (%d)",
dev->name,
pm_device_state_str(PM_DEVICE_STATE_SUSPENDED),
ret);
return ret;
}
TYPE_SECTION_START(pm_device_slots)[num_susp] = dev;
num_susp++;
}
return 0;
}
static void pm_resume_devices(void)
{
for (int i = (num_susp - 1); i >= 0; i--) {
pm_device_action_run(TYPE_SECTION_START(pm_device_slots)[i],
PM_DEVICE_ACTION_RESUME);
}
num_susp = 0;
}
#endif /* !CONFIG_PM_DEVICE_RUNTIME_EXCLUSIVE */
#endif /* CONFIG_PM_DEVICE */
/*
* Function called to notify when the system is entering / exiting a
* power state
*/
static inline void pm_state_notify(bool entering_state)
{
struct pm_notifier *notifier;
k_spinlock_key_t pm_notifier_key;
void (*callback)(enum pm_state state);
pm_notifier_key = k_spin_lock(&pm_notifier_lock);
SYS_SLIST_FOR_EACH_CONTAINER(&pm_notifiers, notifier, _node) {
if (entering_state) {
callback = notifier->state_entry;
} else {
callback = notifier->state_exit;
}
if (callback) {
callback(z_cpus_pm_state[_current_cpu->id].state);
}
}
k_spin_unlock(&pm_notifier_lock, pm_notifier_key);
}
void pm_system_resume(void)
{
uint8_t id = CURRENT_CPU;
/*
* This notification is called from the ISR of the event
* that caused exit from kernel idling after PM operations.
*
* Some CPU low power states require enabling of interrupts
* atomically when entering those states. The wake up from
* such a state first executes code in the ISR of the interrupt
* that caused the wake. This hook will be called from the ISR.
* For such CPU LPS states, do post operations and restores here.
* The kernel scheduler will get control after the ISR finishes
* and it may schedule another thread.
*/
if (atomic_test_and_clear_bit(z_post_ops_required, id)) {
pm_state_exit_post_ops(z_cpus_pm_state[id].state, z_cpus_pm_state[id].substate_id);
pm_state_notify(false);
z_cpus_pm_state[id] = (struct pm_state_info){PM_STATE_ACTIVE,
0, 0};
}
}
bool pm_state_force(uint8_t cpu, const struct pm_state_info *info)
{
k_spinlock_key_t key;
__ASSERT(info->state < PM_STATE_COUNT,
"Invalid power state %d!", info->state);
key = k_spin_lock(&pm_forced_state_lock);
z_cpus_pm_forced_state[cpu] = *info;
k_spin_unlock(&pm_forced_state_lock, key);
return true;
}
bool pm_system_suspend(int32_t ticks)
{
uint8_t id = CURRENT_CPU;
k_spinlock_key_t key;
SYS_PORT_TRACING_FUNC_ENTER(pm, system_suspend, ticks);
key = k_spin_lock(&pm_forced_state_lock);
if (z_cpus_pm_forced_state[id].state != PM_STATE_ACTIVE) {
z_cpus_pm_state[id] = z_cpus_pm_forced_state[id];
z_cpus_pm_forced_state[id].state = PM_STATE_ACTIVE;
} else {
const struct pm_state_info *info;
info = pm_policy_next_state(id, ticks);
if (info != NULL) {
z_cpus_pm_state[id] = *info;
}
}
k_spin_unlock(&pm_forced_state_lock, key);
if (z_cpus_pm_state[id].state == PM_STATE_ACTIVE) {
LOG_DBG("No PM operations done.");
SYS_PORT_TRACING_FUNC_EXIT(pm, system_suspend, ticks,
z_cpus_pm_state[id].state);
return false;
}
#if defined(CONFIG_PM_DEVICE) && !defined(CONFIG_PM_DEVICE_RUNTIME_EXCLUSIVE)
if (atomic_sub(&_cpus_active, 1) == 1) {
if (z_cpus_pm_state[id].state != PM_STATE_RUNTIME_IDLE) {
if (pm_suspend_devices()) {
pm_resume_devices();
z_cpus_pm_state[id].state = PM_STATE_ACTIVE;
(void)atomic_add(&_cpus_active, 1);
SYS_PORT_TRACING_FUNC_EXIT(pm, system_suspend, ticks,
z_cpus_pm_state[id].state);
return false;
}
}
}
#endif
if (ticks != K_TICKS_FOREVER) {
/*
* We need to set the timer to interrupt a little bit early to
* accommodate the time required by the CPU to fully wake up.
*/
sys_clock_set_timeout(ticks -
k_us_to_ticks_ceil32(
z_cpus_pm_state[id].exit_latency_us),
true);
}
/*
* This function runs with interruptions locked but it is
* expected the SoC to unlock them in
* pm_state_exit_post_ops() when returning to active
* state. We don't want to be scheduled out yet, first we need
* to send a notification about leaving the idle state. So,
* we lock the scheduler here and unlock just after we have
* sent the notification in pm_system_resume().
*/
k_sched_lock();
pm_stats_start();
/* Enter power state */
pm_state_notify(true);
atomic_set_bit(z_post_ops_required, id);
pm_state_set(z_cpus_pm_state[id].state, z_cpus_pm_state[id].substate_id);
pm_stats_stop();
/* Wake up sequence starts here */
#if defined(CONFIG_PM_DEVICE) && !defined(CONFIG_PM_DEVICE_RUNTIME_EXCLUSIVE)
if (atomic_add(&_cpus_active, 1) == 0) {
pm_resume_devices();
}
#endif
pm_stats_update(z_cpus_pm_state[id].state);
pm_system_resume();
k_sched_unlock();
SYS_PORT_TRACING_FUNC_EXIT(pm, system_suspend, ticks,
z_cpus_pm_state[id].state);
return true;
}
void pm_notifier_register(struct pm_notifier *notifier)
{
k_spinlock_key_t pm_notifier_key = k_spin_lock(&pm_notifier_lock);
sys_slist_append(&pm_notifiers, &notifier->_node);
k_spin_unlock(&pm_notifier_lock, pm_notifier_key);
}
int pm_notifier_unregister(struct pm_notifier *notifier)
{
int ret = -EINVAL;
k_spinlock_key_t pm_notifier_key;
pm_notifier_key = k_spin_lock(&pm_notifier_lock);
if (sys_slist_find_and_remove(&pm_notifiers, &(notifier->_node))) {
ret = 0;
}
k_spin_unlock(&pm_notifier_lock, pm_notifier_key);
return ret;
}
const struct pm_state_info *pm_state_next_get(uint8_t cpu)
{
return &z_cpus_pm_state[cpu];
}