zephyr/drivers/sensor/bme280/bme280.c
Paul Sokolovsky b7623a85b0 sensors: Redefine SENSOR_CHAN_HUMIDITY in percents, not milli-percents.
Based on the discussion in #5693, the reason why humidity was defined
in milli-percent was likely following Linux which defines it as such
in its sensor subsystem:
http://elixir.free-electrons.com/linux/latest/source/Documentation/ABI/testing/sysfs-bus-iio#L263

However, Linux defines temperature in milli-degrees either, but
Zephyr uses degrees (similarly for most other quantities). Typical
sensor resolution/precision for humidity is also on the order of 1%.

One of the existing drivers, th02.c, already returned values in
percents, and few apps showed it without conversion and/or units,
leading to confusing output to user like "54500".

So, switching units to percents, and update all the drivers and
sample apps.

For few drivers, there was also optimized conversion arithmetics
to avoid u64_t operations. (There're probably more places to
optimize it, and temperature conversion could use such optimization
too, but that's left for another patch.)

Fixes: #5693

Signed-off-by: Paul Sokolovsky <paul.sokolovsky@linaro.org>
2018-02-05 14:10:39 +01:00

386 lines
9.2 KiB
C

/* bmp280.c - Driver for Bosch BMP280 temperature and pressure sensor */
/*
* Copyright (c) 2016, 2017 Intel Corporation
* Copyright (c) 2017 IpTronix S.r.l.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <sensor.h>
#include <init.h>
#include <gpio.h>
#include <misc/byteorder.h>
#include <misc/__assert.h>
#ifdef CONFIG_BME280_DEV_TYPE_I2C
#include <i2c.h>
#elif defined CONFIG_BME280_DEV_TYPE_SPI
#include <spi.h>
#endif
#include "bme280.h"
static int bm280_reg_read(struct bme280_data *data,
u8_t start, u8_t *buf, int size)
{
#ifdef CONFIG_BME280_DEV_TYPE_I2C
return i2c_burst_read(data->i2c_master, data->i2c_slave_addr,
start, buf, size);
#elif defined CONFIG_BME280_DEV_TYPE_SPI
u8_t tx_buf[2];
u8_t rx_buf[2];
int i;
int ret;
for (i = 0; i < size; i++) {
ret = spi_slave_select(data->spi, data->spi_slave);
if (ret) {
SYS_LOG_DBG("spi_slave_select FAIL %d\n", ret);
return ret;
}
tx_buf[0] = (start + i) | 0x80;
ret = spi_transceive(data->spi, tx_buf, 2, rx_buf, 2);
if (ret) {
SYS_LOG_DBG("spi_transceive FAIL %d\n", ret);
return ret;
}
buf[i] = rx_buf[1];
}
#endif
return 0;
}
static int bm280_reg_write(struct bme280_data *data, u8_t reg, u8_t val)
{
#ifdef CONFIG_BME280_DEV_TYPE_I2C
return i2c_reg_write_byte(data->i2c_master, data->i2c_slave_addr,
reg, val);
#elif defined CONFIG_BME280_DEV_TYPE_SPI
u8_t tx_buf[2];
u8_t rx_buf[2];
int ret;
ret = spi_slave_select(data->spi, data->spi_slave);
if (ret) {
SYS_LOG_DBG("spi_slave_select FAIL %d\n", ret);
return ret;
}
reg &= 0x7F;
tx_buf[0] = reg;
tx_buf[1] = val;
ret = spi_transceive(data->spi, tx_buf, 2, rx_buf, 2);
if (ret) {
SYS_LOG_DBG("spi_transceive FAIL %d\n", ret);
return ret;
}
#endif
return 0;
}
/*
* Compensation code taken from BME280 datasheet, Section 4.2.3
* "Compensation formula".
*/
static void bme280_compensate_temp(struct bme280_data *data, s32_t adc_temp)
{
s32_t var1, var2;
var1 = (((adc_temp >> 3) - ((s32_t)data->dig_t1 << 1)) *
((s32_t)data->dig_t2)) >> 11;
var2 = (((((adc_temp >> 4) - ((s32_t)data->dig_t1)) *
((adc_temp >> 4) - ((s32_t)data->dig_t1))) >> 12) *
((s32_t)data->dig_t3)) >> 14;
data->t_fine = var1 + var2;
data->comp_temp = (data->t_fine * 5 + 128) >> 8;
}
static void bme280_compensate_press(struct bme280_data *data, s32_t adc_press)
{
s64_t var1, var2, p;
var1 = ((s64_t)data->t_fine) - 128000;
var2 = var1 * var1 * (s64_t)data->dig_p6;
var2 = var2 + ((var1 * (s64_t)data->dig_p5) << 17);
var2 = var2 + (((s64_t)data->dig_p4) << 35);
var1 = ((var1 * var1 * (s64_t)data->dig_p3) >> 8) +
((var1 * (s64_t)data->dig_p2) << 12);
var1 = (((((s64_t)1) << 47) + var1)) * ((s64_t)data->dig_p1) >> 33;
/* Avoid exception caused by division by zero. */
if (var1 == 0) {
data->comp_press = 0;
return;
}
p = 1048576 - adc_press;
p = (((p << 31) - var2) * 3125) / var1;
var1 = (((s64_t)data->dig_p9) * (p >> 13) * (p >> 13)) >> 25;
var2 = (((s64_t)data->dig_p8) * p) >> 19;
p = ((p + var1 + var2) >> 8) + (((s64_t)data->dig_p7) << 4);
data->comp_press = (u32_t)p;
}
static void bme280_compensate_humidity(struct bme280_data *data,
s32_t adc_humidity)
{
s32_t h;
h = (data->t_fine - ((s32_t)76800));
h = ((((adc_humidity << 14) - (((s32_t)data->dig_h4) << 20) -
(((s32_t)data->dig_h5) * h)) + ((s32_t)16384)) >> 15) *
(((((((h * ((s32_t)data->dig_h6)) >> 10) * (((h *
((s32_t)data->dig_h3)) >> 11) + ((s32_t)32768))) >> 10) +
((s32_t)2097152)) * ((s32_t)data->dig_h2) + 8192) >> 14);
h = (h - (((((h >> 15) * (h >> 15)) >> 7) *
((s32_t)data->dig_h1)) >> 4));
h = (h > 419430400 ? 419430400 : h);
data->comp_humidity = (u32_t)(h >> 12);
}
static int bme280_sample_fetch(struct device *dev, enum sensor_channel chan)
{
struct bme280_data *data = dev->driver_data;
u8_t buf[8];
s32_t adc_press, adc_temp, adc_humidity;
int size = 6;
int ret;
__ASSERT_NO_MSG(chan == SENSOR_CHAN_ALL);
if (data->chip_id == BME280_CHIP_ID) {
size = 8;
}
ret = bm280_reg_read(data, BME280_REG_PRESS_MSB, buf, size);
if (ret < 0) {
return ret;
}
adc_press = (buf[0] << 12) | (buf[1] << 4) | (buf[2] >> 4);
adc_temp = (buf[3] << 12) | (buf[4] << 4) | (buf[5] >> 4);
bme280_compensate_temp(data, adc_temp);
bme280_compensate_press(data, adc_press);
if (data->chip_id == BME280_CHIP_ID) {
adc_humidity = (buf[6] << 8) | buf[7];
bme280_compensate_humidity(data, adc_humidity);
}
return 0;
}
static int bme280_channel_get(struct device *dev,
enum sensor_channel chan,
struct sensor_value *val)
{
struct bme280_data *data = dev->driver_data;
switch (chan) {
case SENSOR_CHAN_TEMP:
/*
* data->comp_temp has a resolution of 0.01 degC. So
* 5123 equals 51.23 degC.
*/
val->val1 = data->comp_temp / 100;
val->val2 = data->comp_temp % 100 * 10000;
break;
case SENSOR_CHAN_PRESS:
/*
* data->comp_press has 24 integer bits and 8
* fractional. Output value of 24674867 represents
* 24674867/256 = 96386.2 Pa = 963.862 hPa
*/
val->val1 = (data->comp_press >> 8) / 1000;
val->val2 = (data->comp_press >> 8) % 1000 * 1000 +
(((data->comp_press & 0xff) * 1000) >> 8);
break;
case SENSOR_CHAN_HUMIDITY:
/*
* data->comp_humidity has 22 integer bits and 10
* fractional. Output value of 47445 represents
* 47445/1024 = 46.333 %RH
*/
val->val1 = (data->comp_humidity >> 10);
val->val2 = (((data->comp_humidity & 0x3ff) * 1000 * 1000) >> 10);
break;
default:
return -EINVAL;
}
return 0;
}
static const struct sensor_driver_api bme280_api_funcs = {
.sample_fetch = bme280_sample_fetch,
.channel_get = bme280_channel_get,
};
static int bme280_read_compensation(struct bme280_data *data)
{
u16_t buf[12];
u8_t hbuf[7];
int err = 0;
err = bm280_reg_read(data, BME280_REG_COMP_START,
(u8_t *)buf, sizeof(buf));
if (err < 0) {
return err;
}
data->dig_t1 = sys_le16_to_cpu(buf[0]);
data->dig_t2 = sys_le16_to_cpu(buf[1]);
data->dig_t3 = sys_le16_to_cpu(buf[2]);
data->dig_p1 = sys_le16_to_cpu(buf[3]);
data->dig_p2 = sys_le16_to_cpu(buf[4]);
data->dig_p3 = sys_le16_to_cpu(buf[5]);
data->dig_p4 = sys_le16_to_cpu(buf[6]);
data->dig_p5 = sys_le16_to_cpu(buf[7]);
data->dig_p6 = sys_le16_to_cpu(buf[8]);
data->dig_p7 = sys_le16_to_cpu(buf[9]);
data->dig_p8 = sys_le16_to_cpu(buf[10]);
data->dig_p9 = sys_le16_to_cpu(buf[11]);
if (data->chip_id == BME280_CHIP_ID) {
err = bm280_reg_read(data, BME280_REG_HUM_COMP_PART1,
&data->dig_h1, 1);
if (err < 0) {
return err;
}
err = bm280_reg_read(data, BME280_REG_HUM_COMP_PART2, hbuf, 7);
if (err < 0) {
return err;
}
data->dig_h2 = (hbuf[1] << 8) | hbuf[0];
data->dig_h3 = hbuf[2];
data->dig_h4 = (hbuf[3] << 4) | (hbuf[4] & 0x0F);
data->dig_h5 = ((hbuf[4] >> 4) & 0x0F) | (hbuf[5] << 4);
data->dig_h6 = hbuf[6];
}
return 0;
}
static int bme280_chip_init(struct device *dev)
{
struct bme280_data *data = (struct bme280_data *) dev->driver_data;
int err;
err = bm280_reg_read(data, BME280_REG_ID, &data->chip_id, 1);
if (err < 0) {
return err;
}
if (data->chip_id == BME280_CHIP_ID) {
SYS_LOG_DBG("BME280 chip detected");
} else if (data->chip_id == BMP280_CHIP_ID_MP ||
data->chip_id == BMP280_CHIP_ID_SAMPLE_1) {
SYS_LOG_DBG("BMP280 chip detected");
} else {
SYS_LOG_DBG("bad chip id 0x%x", data->chip_id);
return -ENOTSUP;
}
err = bme280_read_compensation(data);
if (err < 0) {
return err;
}
if (data->chip_id == BME280_CHIP_ID) {
err = bm280_reg_write(data, BME280_REG_CTRL_HUM,
BME280_HUMIDITY_OVER);
if (err < 0) {
return err;
}
}
err = bm280_reg_write(data, BME280_REG_CTRL_MEAS, BME280_CTRL_MEAS_VAL);
if (err < 0) {
return err;
}
err = bm280_reg_write(data, BME280_REG_CONFIG, BME280_CONFIG_VAL);
if (err < 0) {
return err;
}
return 0;
}
#ifdef CONFIG_BME280_DEV_TYPE_SPI
static inline int bme280_spi_init(struct bme280_data *data)
{
struct spi_config spi_config;
int ret;
data->spi = device_get_binding(CONFIG_BME280_SPI_DEV_NAME);
if (!data->spi) {
SYS_LOG_DBG("spi device not found: %s",
CONFIG_BME280_SPI_DEV_NAME);
return -EINVAL;
}
spi_config.config = SPI_WORD(8) | SPI_TRANSFER_MSB |
SPI_MODE_CPOL | SPI_MODE_CPHA;
spi_config.max_sys_freq = 4;
ret = spi_configure(data->spi, &spi_config);
if (ret) {
SYS_LOG_DBG("SPI configuration error %s %d\n",
CONFIG_BME280_SPI_DEV_NAME, ret);
return ret;
}
return 0;
}
#endif
int bme280_init(struct device *dev)
{
struct bme280_data *data = dev->driver_data;
#ifdef CONFIG_BME280_DEV_TYPE_I2C
data->i2c_master = device_get_binding(CONFIG_BME280_I2C_MASTER_DEV_NAME);
if (!data->i2c_master) {
SYS_LOG_DBG("i2c master not found: %s",
CONFIG_BME280_I2C_MASTER_DEV_NAME);
return -EINVAL;
}
data->i2c_slave_addr = BME280_I2C_ADDR;
#elif defined CONFIG_BME280_DEV_TYPE_SPI
if (bme280_spi_init(data) < 0) {
SYS_LOG_DBG("spi master not found: %s",
CONFIG_BME280_SPI_DEV_NAME);
return -EINVAL;
}
data->spi_slave = CONFIG_BME280_SPI_DEV_SLAVE;
#endif
if (bme280_chip_init(dev) < 0) {
return -EINVAL;
}
return 0;
}
static struct bme280_data bme280_data;
DEVICE_AND_API_INIT(bme280, CONFIG_BME280_DEV_NAME, bme280_init, &bme280_data,
NULL, POST_KERNEL, CONFIG_SENSOR_INIT_PRIORITY,
&bme280_api_funcs);