zephyr/kernel/userspace.c
Andrew Boie 09c22cc45d userspace: add net_context as a kernel object
Socket APIs pass pointers to these disguised as file descriptors.
This lets us effectively validate them.

Kernel objects now can have Kconfig dependencies specified, in case
certain structs are not available in all configurations.

Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
2018-08-13 07:19:39 -07:00

714 lines
15 KiB
C

/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <string.h>
#include <misc/printk.h>
#include <misc/rb.h>
#include <kernel_structs.h>
#include <sys_io.h>
#include <ksched.h>
#include <syscall.h>
#include <syscall_handler.h>
#include <device.h>
#include <init.h>
#include <logging/sys_log.h>
#if defined(CONFIG_NETWORKING) && defined (CONFIG_DYNAMIC_OBJECTS)
/* Used by auto-generated obj_size_get() switch body, as we need to
* know the size of struct net_context
*/
#include <net/net_context.h>
#endif
#define MAX_THREAD_BITS (CONFIG_MAX_THREAD_BYTES * 8)
#ifdef CONFIG_DYNAMIC_OBJECTS
extern u8_t _thread_idx_map[CONFIG_MAX_THREAD_BYTES];
#endif
static void clear_perms_cb(struct _k_object *ko, void *ctx_ptr);
const char *otype_to_str(enum k_objects otype)
{
/* -fdata-sections doesn't work right except in very very recent
* GCC and these literal strings would appear in the binary even if
* otype_to_str was omitted by the linker
*/
#ifdef CONFIG_PRINTK
switch (otype) {
/* otype-to-str.h is generated automatically during build by
* gen_kobject_list.py
*/
#include <otype-to-str.h>
default:
return "?";
}
#else
ARG_UNUSED(otype);
return NULL;
#endif
}
struct perm_ctx {
int parent_id;
int child_id;
struct k_thread *parent;
};
#ifdef CONFIG_DYNAMIC_OBJECTS
struct dyn_obj {
struct _k_object kobj;
sys_dnode_t obj_list;
struct rbnode node; /* must be immediately before data member */
u8_t data[]; /* The object itself */
};
extern struct _k_object *_k_object_gperf_find(void *obj);
extern void _k_object_gperf_wordlist_foreach(_wordlist_cb_func_t func,
void *context);
static int node_lessthan(struct rbnode *a, struct rbnode *b);
/*
* Red/black tree of allocated kernel objects, for reasonably fast lookups
* based on object pointer values.
*/
static struct rbtree obj_rb_tree = {
.lessthan_fn = node_lessthan
};
/*
* Linked list of allocated kernel objects, for iteration over all allocated
* objects (and potentially deleting them during iteration).
*/
static sys_dlist_t obj_list = SYS_DLIST_STATIC_INIT(&obj_list);
/*
* TODO: Write some hash table code that will replace both obj_rb_tree
* and obj_list.
*/
static size_t obj_size_get(enum k_objects otype)
{
switch (otype) {
#include <otype-to-size.h>
default:
return sizeof(struct device);
}
}
static int node_lessthan(struct rbnode *a, struct rbnode *b)
{
return a < b;
}
static inline struct dyn_obj *node_to_dyn_obj(struct rbnode *node)
{
return CONTAINER_OF(node, struct dyn_obj, node);
}
static struct dyn_obj *dyn_object_find(void *obj)
{
struct rbnode *node;
struct dyn_obj *ret;
int key;
/* For any dynamically allocated kernel object, the object
* pointer is just a member of the conatining struct dyn_obj,
* so just a little arithmetic is necessary to locate the
* corresponding struct rbnode
*/
node = (struct rbnode *)((char *)obj - sizeof(struct rbnode));
key = irq_lock();
if (rb_contains(&obj_rb_tree, node)) {
ret = node_to_dyn_obj(node);
} else {
ret = NULL;
}
irq_unlock(key);
return ret;
}
/**
* @internal
*
* @brief Allocate a new thread index for a new thread.
*
* This finds an unused thread index that can be assigned to a new
* thread. If too many threads have been allocated, the kernel will
* run out of indexes and this function will fail.
*
* Note that if an unused index is found, that index will be marked as
* used after return of this function.
*
* @param tidx The new thread index if successful
*
* @return 1 if successful, 0 if failed
**/
static int _thread_idx_alloc(u32_t *tidx)
{
int i;
int idx;
int base;
base = 0;
for (i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) {
idx = find_lsb_set(_thread_idx_map[i]);
if (idx) {
*tidx = base + (idx - 1);
sys_bitfield_clear_bit((mem_addr_t)_thread_idx_map,
*tidx);
/* Clear permission from all objects */
_k_object_wordlist_foreach(clear_perms_cb,
(void *)*tidx);
return 1;
}
base += 8;
}
return 0;
}
/**
* @internal
*
* @brief Free a thread index.
*
* This frees a thread index so it can be used by another
* thread.
*
* @param tidx The thread index to be freed
**/
static void _thread_idx_free(u32_t tidx)
{
/* To prevent leaked permission when index is recycled */
_k_object_wordlist_foreach(clear_perms_cb, (void *)tidx);
sys_bitfield_set_bit((mem_addr_t)_thread_idx_map, tidx);
}
void *_impl_k_object_alloc(enum k_objects otype)
{
struct dyn_obj *dyn_obj;
int key;
u32_t tidx;
/* Stacks are not supported, we don't yet have mem pool APIs
* to request memory that is aligned
*/
__ASSERT(otype > K_OBJ_ANY && otype < K_OBJ_LAST &&
otype != K_OBJ__THREAD_STACK_ELEMENT,
"bad object type requested");
dyn_obj = z_thread_malloc(sizeof(*dyn_obj) + obj_size_get(otype));
if (!dyn_obj) {
SYS_LOG_WRN("could not allocate kernel object");
return NULL;
}
dyn_obj->kobj.name = (char *)&dyn_obj->data;
dyn_obj->kobj.type = otype;
dyn_obj->kobj.flags = K_OBJ_FLAG_ALLOC;
memset(dyn_obj->kobj.perms, 0, CONFIG_MAX_THREAD_BYTES);
/* Need to grab a new thread index for k_thread */
if (otype == K_OBJ_THREAD) {
if (!_thread_idx_alloc(&tidx)) {
k_free(dyn_obj);
return NULL;
}
dyn_obj->kobj.data = tidx;
}
/* The allocating thread implicitly gets permission on kernel objects
* that it allocates
*/
_thread_perms_set(&dyn_obj->kobj, _current);
key = irq_lock();
rb_insert(&obj_rb_tree, &dyn_obj->node);
sys_dlist_append(&obj_list, &dyn_obj->obj_list);
irq_unlock(key);
return dyn_obj->kobj.name;
}
void k_object_free(void *obj)
{
struct dyn_obj *dyn_obj;
int key;
/* This function is intentionally not exposed to user mode.
* There's currently no robust way to track that an object isn't
* being used by some other thread
*/
key = irq_lock();
dyn_obj = dyn_object_find(obj);
if (dyn_obj) {
rb_remove(&obj_rb_tree, &dyn_obj->node);
sys_dlist_remove(&dyn_obj->obj_list);
if (dyn_obj->kobj.type == K_OBJ_THREAD) {
_thread_idx_free(dyn_obj->kobj.data);
}
}
irq_unlock(key);
if (dyn_obj) {
k_free(dyn_obj);
}
}
struct _k_object *_k_object_find(void *obj)
{
struct _k_object *ret;
ret = _k_object_gperf_find(obj);
if (!ret) {
struct dyn_obj *dyn_obj;
dyn_obj = dyn_object_find(obj);
if (dyn_obj) {
ret = &dyn_obj->kobj;
}
}
return ret;
}
void _k_object_wordlist_foreach(_wordlist_cb_func_t func, void *context)
{
int key;
struct dyn_obj *obj, *next;
_k_object_gperf_wordlist_foreach(func, context);
key = irq_lock();
SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&obj_list, obj, next, obj_list) {
func(&obj->kobj, context);
}
irq_unlock(key);
}
#endif /* CONFIG_DYNAMIC_OBJECTS */
static int thread_index_get(struct k_thread *t)
{
struct _k_object *ko;
ko = _k_object_find(t);
if (!ko) {
return -1;
}
return ko->data;
}
static void unref_check(struct _k_object *ko)
{
for (int i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) {
if (ko->perms[i]) {
return;
}
}
/* This object has no more references. Some objects may have
* dynamically allocated resources, require cleanup, or need to be
* marked as uninitailized when all references are gone. What
* specifically needs to happen depends on the object type.
*/
switch (ko->type) {
case K_OBJ_PIPE:
k_pipe_cleanup((struct k_pipe *)ko->name);
break;
case K_OBJ_MSGQ:
k_msgq_cleanup((struct k_msgq *)ko->name);
break;
case K_OBJ_STACK:
k_stack_cleanup((struct k_stack *)ko->name);
break;
default:
break;
}
#ifdef CONFIG_DYNAMIC_OBJECTS
if (ko->flags & K_OBJ_FLAG_ALLOC) {
struct dyn_obj *dyn_obj =
CONTAINER_OF(ko, struct dyn_obj, kobj);
rb_remove(&obj_rb_tree, &dyn_obj->node);
sys_dlist_remove(&dyn_obj->obj_list);
k_free(dyn_obj);
}
#endif
}
static void wordlist_cb(struct _k_object *ko, void *ctx_ptr)
{
struct perm_ctx *ctx = (struct perm_ctx *)ctx_ptr;
if (sys_bitfield_test_bit((mem_addr_t)&ko->perms, ctx->parent_id) &&
(struct k_thread *)ko->name != ctx->parent) {
sys_bitfield_set_bit((mem_addr_t)&ko->perms, ctx->child_id);
}
}
void _thread_perms_inherit(struct k_thread *parent, struct k_thread *child)
{
struct perm_ctx ctx = {
thread_index_get(parent),
thread_index_get(child),
parent
};
if ((ctx.parent_id != -1) && (ctx.child_id != -1)) {
_k_object_wordlist_foreach(wordlist_cb, &ctx);
}
}
void _thread_perms_set(struct _k_object *ko, struct k_thread *thread)
{
int index = thread_index_get(thread);
if (index != -1) {
sys_bitfield_set_bit((mem_addr_t)&ko->perms, index);
}
}
void _thread_perms_clear(struct _k_object *ko, struct k_thread *thread)
{
int index = thread_index_get(thread);
if (index != -1) {
int key = irq_lock();
sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index);
unref_check(ko);
irq_unlock(key);
}
}
static void clear_perms_cb(struct _k_object *ko, void *ctx_ptr)
{
int id = (int)ctx_ptr;
int key = irq_lock();
sys_bitfield_clear_bit((mem_addr_t)&ko->perms, id);
unref_check(ko);
irq_unlock(key);
}
void _thread_perms_all_clear(struct k_thread *thread)
{
int index = thread_index_get(thread);
if (index != -1) {
_k_object_wordlist_foreach(clear_perms_cb, (void *)index);
}
}
static int thread_perms_test(struct _k_object *ko)
{
int index;
if (ko->flags & K_OBJ_FLAG_PUBLIC) {
return 1;
}
index = thread_index_get(_current);
if (index != -1) {
return sys_bitfield_test_bit((mem_addr_t)&ko->perms, index);
}
return 0;
}
static void dump_permission_error(struct _k_object *ko)
{
int index = thread_index_get(_current);
printk("thread %p (%d) does not have permission on %s %p [",
_current, index,
otype_to_str(ko->type), ko->name);
for (int i = CONFIG_MAX_THREAD_BYTES - 1; i >= 0; i--) {
printk("%02x", ko->perms[i]);
}
printk("]\n");
}
void _dump_object_error(int retval, void *obj, struct _k_object *ko,
enum k_objects otype)
{
switch (retval) {
case -EBADF:
printk("%p is not a valid %s\n", obj, otype_to_str(otype));
break;
case -EPERM:
dump_permission_error(ko);
break;
case -EINVAL:
printk("%p used before initialization\n", obj);
break;
case -EADDRINUSE:
printk("%p %s in use\n", obj, otype_to_str(otype));
}
}
void _impl_k_object_access_grant(void *object, struct k_thread *thread)
{
struct _k_object *ko = _k_object_find(object);
if (ko) {
_thread_perms_set(ko, thread);
}
}
void k_object_access_revoke(void *object, struct k_thread *thread)
{
struct _k_object *ko = _k_object_find(object);
if (ko) {
_thread_perms_clear(ko, thread);
}
}
void _impl_k_object_release(void *object)
{
k_object_access_revoke(object, _current);
}
void k_object_access_all_grant(void *object)
{
struct _k_object *ko = _k_object_find(object);
if (ko) {
ko->flags |= K_OBJ_FLAG_PUBLIC;
}
}
int _k_object_validate(struct _k_object *ko, enum k_objects otype,
enum _obj_init_check init)
{
if (unlikely(!ko || (otype != K_OBJ_ANY && ko->type != otype))) {
return -EBADF;
}
/* Manipulation of any kernel objects by a user thread requires that
* thread be granted access first, even for uninitialized objects
*/
if (unlikely(!thread_perms_test(ko))) {
return -EPERM;
}
/* Initialization state checks. _OBJ_INIT_ANY, we don't care */
if (likely(init == _OBJ_INIT_TRUE)) {
/* Object MUST be intialized */
if (unlikely(!(ko->flags & K_OBJ_FLAG_INITIALIZED))) {
return -EINVAL;
}
} else if (init < _OBJ_INIT_TRUE) { /* _OBJ_INIT_FALSE case */
/* Object MUST NOT be initialized */
if (unlikely(ko->flags & K_OBJ_FLAG_INITIALIZED)) {
return -EADDRINUSE;
}
}
return 0;
}
void _k_object_init(void *object)
{
struct _k_object *ko;
/* By the time we get here, if the caller was from userspace, all the
* necessary checks have been done in _k_object_validate(), which takes
* place before the object is initialized.
*
* This function runs after the object has been initialized and
* finalizes it
*/
ko = _k_object_find(object);
if (!ko) {
/* Supervisor threads can ignore rules about kernel objects
* and may declare them on stacks, etc. Such objects will never
* be usable from userspace, but we shouldn't explode.
*/
return;
}
/* Allows non-initialization system calls to be made on this object */
ko->flags |= K_OBJ_FLAG_INITIALIZED;
}
void _k_object_recycle(void *object)
{
struct _k_object *ko = _k_object_find(object);
if (ko) {
memset(ko->perms, 0, sizeof(ko->perms));
_thread_perms_set(ko, k_current_get());
ko->flags |= K_OBJ_FLAG_INITIALIZED;
}
}
void _k_object_uninit(void *object)
{
struct _k_object *ko;
/* See comments in _k_object_init() */
ko = _k_object_find(object);
if (!ko) {
return;
}
ko->flags &= ~K_OBJ_FLAG_INITIALIZED;
}
/*
* Copy to/from helper functions used in syscall handlers
*/
void *z_user_alloc_from_copy(void *src, size_t size)
{
void *dst = NULL;
int key;
key = irq_lock();
/* Does the caller in user mode have access to read this memory? */
if (Z_SYSCALL_MEMORY_READ(src, size)) {
goto out_err;
}
dst = z_thread_malloc(size);
if (!dst) {
printk("out of thread resource pool memory (%zu)", size);
goto out_err;
}
memcpy(dst, src, size);
out_err:
irq_unlock(key);
return dst;
}
static int user_copy(void *dst, void *src, size_t size, bool to_user)
{
int ret = EFAULT;
int key;
key = irq_lock();
/* Does the caller in user mode have access to this memory? */
if (to_user ? Z_SYSCALL_MEMORY_WRITE(dst, size) :
Z_SYSCALL_MEMORY_READ(src, size)) {
goto out_err;
}
memcpy(dst, src, size);
ret = 0;
out_err:
irq_unlock(key);
return ret;
}
int z_user_from_copy(void *dst, void *src, size_t size)
{
return user_copy(dst, src, size, false);
}
int z_user_to_copy(void *dst, void *src, size_t size)
{
return user_copy(dst, src, size, true);
}
char *z_user_string_alloc_copy(char *src, size_t maxlen)
{
unsigned long actual_len;
int key, err;
char *ret = NULL;
key = irq_lock();
actual_len = z_user_string_nlen(src, maxlen, &err);
if (err) {
goto out;
}
if (actual_len == maxlen) {
/* Not NULL terminated */
printk("string too long %p (%lu)\n", src, actual_len);
goto out;
}
if (__builtin_uaddl_overflow(actual_len, 1, &actual_len)) {
printk("overflow\n");
goto out;
}
ret = z_user_alloc_from_copy(src, actual_len);
out:
irq_unlock(key);
return ret;
}
int z_user_string_copy(char *dst, char *src, size_t maxlen)
{
unsigned long actual_len;
int key, ret, err;
key = irq_lock();
actual_len = z_user_string_nlen(src, maxlen, &err);
if (err) {
ret = EFAULT;
goto out;
}
if (actual_len == maxlen) {
/* Not NULL terminated */
printk("string too long %p (%lu)\n", src, actual_len);
ret = EINVAL;
goto out;
}
if (__builtin_uaddl_overflow(actual_len, 1, &actual_len)) {
printk("overflow\n");
ret = EINVAL;
goto out;
}
ret = z_user_from_copy(dst, src, actual_len);
out:
irq_unlock(key);
return ret;
}
/*
* Default handlers if otherwise unimplemented
*/
static u32_t handler_bad_syscall(u32_t bad_id, u32_t arg2, u32_t arg3,
u32_t arg4, u32_t arg5, u32_t arg6, void *ssf)
{
printk("Bad system call id %u invoked\n", bad_id);
_arch_syscall_oops(ssf);
CODE_UNREACHABLE;
}
static u32_t handler_no_syscall(u32_t arg1, u32_t arg2, u32_t arg3,
u32_t arg4, u32_t arg5, u32_t arg6, void *ssf)
{
printk("Unimplemented system call\n");
_arch_syscall_oops(ssf);
CODE_UNREACHABLE;
}
#include <syscall_dispatch.c>