zephyr/subsys/net/lib/sockets/sockets_can.c
Jukka Rissanen 06b500b6bd net: sockets: can: Close the socket cleanly
If the socket is closed, then do CAN detach if that is needed.
This way the CAN interrupts are not received if there are no
CAN sockets listening the data.

Signed-off-by: Jukka Rissanen <jukka.rissanen@linux.intel.com>
2019-06-18 17:58:00 +03:00

701 lines
15 KiB
C

/*
* Copyright (c) 2019 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdbool.h>
#include <fcntl.h>
#include <logging/log.h>
LOG_MODULE_REGISTER(net_sock_can, CONFIG_NET_SOCKETS_LOG_LEVEL);
#include <kernel.h>
#include <entropy.h>
#include <misc/util.h>
#include <net/net_context.h>
#include <net/net_pkt.h>
#include <net/socket.h>
#include <syscall_handler.h>
#include <misc/fdtable.h>
#include <net/socket_can.h>
#include "sockets_internal.h"
#define MEM_ALLOC_TIMEOUT K_MSEC(50)
struct can_recv {
struct net_if *iface;
struct net_context *ctx;
canid_t can_id;
canid_t can_mask;
};
static struct can_recv receivers[CONFIG_NET_SOCKETS_CAN_RECEIVERS];
extern const struct socket_op_vtable sock_fd_op_vtable;
static const struct socket_op_vtable can_sock_fd_op_vtable;
static inline int k_fifo_wait_non_empty(struct k_fifo *fifo, int32_t timeout)
{
struct k_poll_event events[] = {
K_POLL_EVENT_INITIALIZER(K_POLL_TYPE_FIFO_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY, fifo),
};
return k_poll(events, ARRAY_SIZE(events), timeout);
}
int zcan_socket(int family, int type, int proto)
{
struct net_context *ctx;
int fd;
int ret;
fd = z_reserve_fd();
if (fd < 0) {
return -1;
}
ret = net_context_get(family, type, proto, &ctx);
if (ret < 0) {
z_free_fd(fd);
errno = -ret;
return -1;
}
/* Initialize user_data, all other calls will preserve it */
ctx->user_data = NULL;
k_fifo_init(&ctx->recv_q);
#ifdef CONFIG_USERSPACE
/* Set net context object as initialized and grant access to the
* calling thread (and only the calling thread)
*/
z_object_recycle(ctx);
#endif
z_finalize_fd(fd, ctx,
(const struct fd_op_vtable *)&can_sock_fd_op_vtable);
return fd;
}
static void zcan_received_cb(struct net_context *ctx, struct net_pkt *pkt,
union net_ip_header *ip_hdr,
union net_proto_header *proto_hdr,
int status, void *user_data)
{
/* The ctx parameter is not really relevant here. It refers to first
* net_context that was used when registering CAN socket.
* In practice there can be multiple sockets that are interested in
* same CAN id packets. That is why we need to implement the dispatcher
* which will give the packet to correct net_context(s).
*/
struct net_pkt *clone = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(receivers); i++) {
struct zcan_frame *zframe =
(struct zcan_frame *)net_pkt_data(pkt);
struct can_frame frame;
if (!receivers[i].ctx ||
receivers[i].iface != net_pkt_iface(pkt)) {
continue;
}
can_copy_zframe_to_frame(zframe, &frame);
if ((frame.can_id & receivers[i].can_mask) !=
(receivers[i].can_id & receivers[i].can_mask)) {
continue;
}
/* If there are multiple receivers configured, we use the
* original net_pkt as a template, and just clone it to all
* recipients. This is done like this so that we avoid the
* original net_pkt being freed while we are cloning it.
*/
if (pkt != NULL && ARRAY_SIZE(receivers) > 1) {
/* There are multiple receivers, we need to clone
* the packet.
*/
clone = net_pkt_clone(pkt, MEM_ALLOC_TIMEOUT);
if (!clone) {
/* Sent the packet to at least one recipient
* if there is no memory to clone the packet.
*/
clone = pkt;
}
} else {
clone = pkt;
}
ctx = receivers[i].ctx;
NET_DBG("[%d] ctx %p pkt %p st %d", i, ctx, clone, status);
/* if pkt is NULL, EOF */
if (!clone) {
struct net_pkt *last_pkt =
k_fifo_peek_tail(&ctx->recv_q);
if (!last_pkt) {
/* If there're no packets in the queue,
* recv() may be blocked waiting on it to
* become non-empty, so cancel that wait.
*/
sock_set_eof(ctx);
k_fifo_cancel_wait(&ctx->recv_q);
NET_DBG("Marked socket %p as peer-closed", ctx);
} else {
net_pkt_set_eof(last_pkt, true);
NET_DBG("Set EOF flag on pkt %p", ctx);
}
return;
} else {
/* Normal packet */
net_pkt_set_eof(clone, false);
k_fifo_put(&ctx->recv_q, clone);
}
}
if (clone && clone != pkt) {
net_pkt_unref(pkt);
}
}
static int zcan_bind_ctx(struct net_context *ctx, const struct sockaddr *addr,
socklen_t addrlen)
{
struct sockaddr_can *can_addr = (struct sockaddr_can *)addr;
struct net_if *iface;
int ret;
if (addrlen != sizeof(struct sockaddr_can)) {
return -EINVAL;
}
iface = net_if_get_by_index(can_addr->can_ifindex);
if (!iface) {
return -ENOENT;
}
net_context_set_iface(ctx, iface);
ret = net_context_bind(ctx, addr, addrlen);
if (ret < 0) {
errno = -ret;
return -1;
}
/* For CAN socket, we expect to receive packets after call to bind().
*/
ret = net_context_recv(ctx, zcan_received_cb, K_NO_WAIT,
ctx->user_data);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
ssize_t zcan_sendto_ctx(struct net_context *ctx, const void *buf, size_t len,
int flags, const struct sockaddr *dest_addr,
socklen_t addrlen)
{
struct sockaddr_can can_addr;
struct zcan_frame zframe;
s32_t timeout = K_FOREVER;
int ret;
/* Setting destination address does not probably make sense here so
* ignore it. You need to use bind() to set the CAN interface.
*/
if (dest_addr) {
NET_DBG("CAN destination address ignored");
}
if ((flags & ZSOCK_MSG_DONTWAIT) || sock_is_nonblock(ctx)) {
timeout = K_NO_WAIT;
}
if (addrlen == 0) {
addrlen = sizeof(struct sockaddr_can);
}
if (dest_addr == NULL) {
memset(&can_addr, 0, sizeof(can_addr));
can_addr.can_ifindex = -1;
can_addr.can_family = AF_CAN;
dest_addr = (struct sockaddr *)&can_addr;
}
NET_ASSERT(len == sizeof(struct can_frame));
can_copy_frame_to_zframe((struct can_frame *)buf, &zframe);
ret = net_context_sendto(ctx, (void *)&zframe, sizeof(zframe),
dest_addr, addrlen, NULL, timeout,
ctx->user_data);
if (ret < 0) {
errno = -ret;
return -1;
}
return len;
}
static ssize_t zcan_recvfrom_ctx(struct net_context *ctx, void *buf,
size_t max_len, int flags,
struct sockaddr *src_addr,
socklen_t *addrlen)
{
struct zcan_frame zframe;
size_t recv_len = 0;
s32_t timeout = K_FOREVER;
struct net_pkt *pkt;
if ((flags & ZSOCK_MSG_DONTWAIT) || sock_is_nonblock(ctx)) {
timeout = K_NO_WAIT;
}
if (flags & ZSOCK_MSG_PEEK) {
int ret;
ret = k_fifo_wait_non_empty(&ctx->recv_q, timeout);
/* EAGAIN when timeout expired, EINTR when cancelled */
if (ret && ret != -EAGAIN && ret != -EINTR) {
errno = -ret;
return -1;
}
pkt = k_fifo_peek_head(&ctx->recv_q);
} else {
pkt = k_fifo_get(&ctx->recv_q, timeout);
}
if (!pkt) {
errno = EAGAIN;
return -1;
}
/* We do not handle any headers here, just pass the whole packet to
* the caller.
*/
recv_len = net_pkt_get_len(pkt);
if (recv_len > max_len) {
recv_len = max_len;
}
if (net_pkt_read(pkt, (void *)&zframe, sizeof(zframe))) {
net_pkt_unref(pkt);
errno = EIO;
return -1;
}
NET_ASSERT(recv_len == sizeof(struct can_frame));
can_copy_zframe_to_frame(&zframe, (struct can_frame *)buf);
net_pkt_unref(pkt);
return recv_len;
}
static int zcan_getsockopt_ctx(struct net_context *ctx, int level, int optname,
void *optval, socklen_t *optlen)
{
if (!optval || !optlen) {
errno = EINVAL;
return -1;
}
return sock_fd_op_vtable.getsockopt(ctx, level, optname,
optval, optlen);
}
static int zcan_setsockopt_ctx(struct net_context *ctx, int level, int optname,
const void *optval, socklen_t optlen)
{
return sock_fd_op_vtable.setsockopt(ctx, level, optname,
optval, optlen);
}
static ssize_t can_sock_read_vmeth(void *obj, void *buffer, size_t count)
{
return zcan_recvfrom_ctx(obj, buffer, count, 0, NULL, 0);
}
static ssize_t can_sock_write_vmeth(void *obj, const void *buffer,
size_t count)
{
return zcan_sendto_ctx(obj, buffer, count, 0, NULL, 0);
}
static bool is_already_attached(struct can_filter *filter,
struct net_if *iface,
struct net_context *ctx)
{
int i;
for (i = 0; i < ARRAY_SIZE(receivers); i++) {
if (receivers[i].ctx != ctx && receivers[i].iface == iface &&
((receivers[i].can_id & receivers[i].can_mask) ==
(UNALIGNED_GET(&filter->can_id) &
UNALIGNED_GET(&filter->can_mask)))) {
return true;
}
}
return false;
}
static int close_socket(struct net_context *ctx)
{
const struct canbus_api *api;
struct net_if *iface;
struct device *dev;
iface = net_context_get_iface(ctx);
dev = net_if_get_device(iface);
api = dev->driver_api;
if (!api || !api->close) {
return -ENOTSUP;
}
api->close(dev, net_context_get_filter_id(ctx));
return 0;
}
static int can_close_socket(struct net_context *ctx)
{
int i, ret;
for (i = 0; i < ARRAY_SIZE(receivers); i++) {
if (receivers[i].ctx == ctx) {
struct can_filter filter;
receivers[i].ctx = NULL;
filter.can_id = receivers[i].can_id;
filter.can_mask = receivers[i].can_mask;
if (!is_already_attached(&filter,
net_context_get_iface(ctx),
ctx)) {
/* We can detach now as there are no other
* sockets that have same filter.
*/
ret = close_socket(ctx);
if (ret < 0) {
return ret;
}
}
return 0;
}
}
return 0;
}
static int can_sock_ioctl_vmeth(void *obj, unsigned int request, va_list args)
{
if (request == ZFD_IOCTL_CLOSE) {
int ret;
ret = can_close_socket(obj);
if (ret < 0) {
NET_DBG("Cannot detach net_context %p (%d)", obj, ret);
}
}
return sock_fd_op_vtable.fd_vtable.ioctl(obj, request, args);
}
/*
* TODO: A CAN socket can be bound to a network device using SO_BINDTODEVICE.
*/
static int can_sock_bind_vmeth(void *obj, const struct sockaddr *addr,
socklen_t addrlen)
{
return zcan_bind_ctx(obj, addr, addrlen);
}
/* The connect() function is no longer necessary. */
static int can_sock_connect_vmeth(void *obj, const struct sockaddr *addr,
socklen_t addrlen)
{
return 0;
}
/*
* The listen() and accept() functions are without any functionality,
* since the client-Server-Semantic is no longer present.
* When we use RAW-sockets we are sending unconnected packets.
*/
static int can_sock_listen_vmeth(void *obj, int backlog)
{
return 0;
}
static int can_sock_accept_vmeth(void *obj, struct sockaddr *addr,
socklen_t *addrlen)
{
return 0;
}
static ssize_t can_sock_sendto_vmeth(void *obj, const void *buf, size_t len,
int flags,
const struct sockaddr *dest_addr,
socklen_t addrlen)
{
return zcan_sendto_ctx(obj, buf, len, flags, dest_addr, addrlen);
}
static ssize_t can_sock_recvfrom_vmeth(void *obj, void *buf, size_t max_len,
int flags, struct sockaddr *src_addr,
socklen_t *addrlen)
{
return zcan_recvfrom_ctx(obj, buf, max_len, flags,
src_addr, addrlen);
}
static int can_sock_getsockopt_vmeth(void *obj, int level, int optname,
void *optval, socklen_t *optlen)
{
if (level == SOL_CAN_RAW) {
const struct canbus_api *api;
struct net_if *iface;
struct device *dev;
if (optval == NULL) {
errno = EINVAL;
return -1;
}
iface = net_context_get_iface(obj);
dev = net_if_get_device(iface);
api = dev->driver_api;
if (!api || !api->getsockopt) {
errno = ENOTSUP;
return -1;
}
return api->getsockopt(dev, obj, level, optname, optval,
optlen);
}
return zcan_getsockopt_ctx(obj, level, optname, optval, optlen);
}
static int can_register_receiver(struct net_if *iface, struct net_context *ctx,
canid_t can_id, canid_t can_mask)
{
int i;
NET_DBG("Max %lu receivers", ARRAY_SIZE(receivers));
for (i = 0; i < ARRAY_SIZE(receivers); i++) {
if (receivers[i].ctx != NULL) {
continue;
}
receivers[i].ctx = ctx;
receivers[i].iface = iface;
receivers[i].can_id = can_id;
receivers[i].can_mask = can_mask;
return i;
}
return -ENOENT;
}
static void can_unregister_receiver(struct net_if *iface,
struct net_context *ctx,
canid_t can_id, canid_t can_mask)
{
int i;
for (i = 0; i < ARRAY_SIZE(receivers); i++) {
if (receivers[i].ctx == ctx &&
receivers[i].iface == iface &&
receivers[i].can_id == can_id &&
receivers[i].can_mask == can_mask) {
receivers[i].ctx = NULL;
return;
}
}
}
static int can_register_filters(struct net_if *iface, struct net_context *ctx,
const struct can_filter *filters, int count)
{
int i, ret;
NET_DBG("Registering %d filters", count);
for (i = 0; i < count; i++) {
ret = can_register_receiver(iface, ctx, filters[i].can_id,
filters[i].can_mask);
if (ret < 0) {
goto revert;
}
}
return 0;
revert:
for (i = 0; i < count; i++) {
can_unregister_receiver(iface, ctx, filters[i].can_id,
filters[i].can_mask);
}
return ret;
}
static void can_unregister_filters(struct net_if *iface,
struct net_context *ctx,
const struct can_filter *filters,
int count)
{
int i;
NET_DBG("Unregistering %d filters", count);
for (i = 0; i < count; i++) {
can_unregister_receiver(iface, ctx, filters[i].can_id,
filters[i].can_mask);
}
}
static int can_sock_setsockopt_vmeth(void *obj, int level, int optname,
const void *optval, socklen_t optlen)
{
const struct canbus_api *api;
struct net_if *iface;
struct device *dev;
int ret;
if (level != SOL_CAN_RAW) {
return zcan_setsockopt_ctx(obj, level, optname, optval, optlen);
}
/* The application must use CAN_filter and then we convert
* it to zcan_filter as the CANBUS drivers expects that.
*/
if (optname == CAN_RAW_FILTER && optlen != sizeof(struct can_filter)) {
errno = EINVAL;
return -1;
}
if (optval == NULL) {
errno = EINVAL;
return -1;
}
iface = net_context_get_iface(obj);
dev = net_if_get_device(iface);
api = dev->driver_api;
if (!api || !api->setsockopt) {
errno = ENOTSUP;
return -1;
}
if (optname == CAN_RAW_FILTER) {
int count, i;
if (optlen % sizeof(struct can_filter) != 0) {
errno = EINVAL;
return -1;
}
count = optlen / sizeof(struct can_filter);
ret = can_register_filters(iface, obj, optval, count);
if (ret < 0) {
errno = -ret;
return -1;
}
for (i = 0; i < count; i++) {
struct can_filter *filter;
struct zcan_filter zfilter;
bool duplicate;
filter = &((struct can_filter *)optval)[i];
/* If someone has already attached the same filter to
* same interface, we do not need to do it here again.
*/
duplicate = is_already_attached(filter, iface, obj);
if (duplicate) {
continue;
}
can_copy_filter_to_zfilter(filter, &zfilter);
ret = api->setsockopt(dev, obj, level, optname,
&zfilter, sizeof(zfilter));
if (ret < 0) {
break;
}
}
if (ret < 0) {
can_unregister_filters(iface, obj, optval, count);
errno = -ret;
return -1;
}
return 0;
}
return api->setsockopt(dev, obj, level, optname, optval, optlen);
}
static const struct socket_op_vtable can_sock_fd_op_vtable = {
.fd_vtable = {
.read = can_sock_read_vmeth,
.write = can_sock_write_vmeth,
.ioctl = can_sock_ioctl_vmeth,
},
.bind = can_sock_bind_vmeth,
.connect = can_sock_connect_vmeth,
.listen = can_sock_listen_vmeth,
.accept = can_sock_accept_vmeth,
.sendto = can_sock_sendto_vmeth,
.recvfrom = can_sock_recvfrom_vmeth,
.getsockopt = can_sock_getsockopt_vmeth,
.setsockopt = can_sock_setsockopt_vmeth,
};
static bool can_is_supported(int family, int type, int proto)
{
if (type != SOCK_RAW || proto != CAN_RAW) {
return false;
}
return true;
}
NET_SOCKET_REGISTER(af_can, AF_CAN, can_is_supported, zcan_socket);