zephyr/tests/lib/cmsis_dsp/complexmath/src/f32.c
Gerard Marull-Paretas 79e6b0e0f6 includes: prefer <zephyr/kernel.h> over <zephyr/zephyr.h>
As of today <zephyr/zephyr.h> is 100% equivalent to <zephyr/kernel.h>.
This patch proposes to then include <zephyr/kernel.h> instead of
<zephyr/zephyr.h> since it is more clear that you are including the
Kernel APIs and (probably) nothing else. <zephyr/zephyr.h> sounds like a
catch-all header that may be confusing. Most applications need to
include a bunch of other things to compile, e.g. driver headers or
subsystem headers like BT, logging, etc.

The idea of a catch-all header in Zephyr is probably not feasible
anyway. Reason is that Zephyr is not a library, like it could be for
example `libpython`. Zephyr provides many utilities nowadays: a kernel,
drivers, subsystems, etc and things will likely grow. A catch-all header
would be massive, difficult to keep up-to-date. It is also likely that
an application will only build a small subset. Note that subsystem-level
headers may use a catch-all approach to make things easier, though.

NOTE: This patch is **NOT** removing the header, just removing its usage
in-tree. I'd advocate for its deprecation (add a #warning on it), but I
understand many people will have concerns.

Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
2022-09-05 16:31:47 +02:00

236 lines
6.7 KiB
C

/*
* Copyright (c) 2020 Stephanos Ioannidis <root@stephanos.io>
* Copyright (C) 2010-2020 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/ztest.h>
#include <zephyr/kernel.h>
#include <stdlib.h>
#include <arm_math.h>
#include "../../common/test_common.h"
#include "f32.pat"
#define SNR_ERROR_THRESH ((float32_t)120)
#define REL_ERROR_THRESH (7.0e-6)
ZTEST_SUITE(complexmath_f32, NULL, NULL, NULL, NULL, NULL);
static void test_arm_cmplx_conj_f32(
const uint32_t *input1, const uint32_t *ref, size_t length)
{
size_t buf_length;
float32_t *output;
/* Complex number buffer length is twice the data length */
buf_length = 2 * length;
/* Allocate output buffer */
output = malloc(buf_length * sizeof(float32_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Run test function */
arm_cmplx_conj_f32((float32_t *)input1, output, length);
/* Validate output */
zassert_true(
test_snr_error_f32(buf_length, output, (float32_t *)ref,
SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_rel_error_f32(buf_length, output, (float32_t *)ref,
REL_ERROR_THRESH),
ASSERT_MSG_REL_ERROR_LIMIT_EXCEED);
/* Free output buffer */
free(output);
}
DEFINE_TEST_VARIANT3(complexmath_f32, arm_cmplx_conj_f32, 3, in_com1, ref_conj, 3);
DEFINE_TEST_VARIANT3(complexmath_f32, arm_cmplx_conj_f32, 8, in_com1, ref_conj, 8);
DEFINE_TEST_VARIANT3(complexmath_f32, arm_cmplx_conj_f32, 11, in_com1, ref_conj, 11);
static void test_arm_cmplx_dot_prod_f32(
const uint32_t *input1, const uint32_t *input2, const uint32_t *ref,
size_t length)
{
float32_t *output;
/* Allocate output buffer */
output = malloc(2 * sizeof(float32_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Run test function */
arm_cmplx_dot_prod_f32(
(float32_t *)input1, (float32_t *)input2, length,
&output[0], &output[1]);
/* Validate output */
zassert_true(
test_snr_error_f32(2, output, (float32_t *)ref,
SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_rel_error_f32(2, output, (float32_t *)ref,
REL_ERROR_THRESH),
ASSERT_MSG_REL_ERROR_LIMIT_EXCEED);
/* Free output buffer */
free(output);
}
DEFINE_TEST_VARIANT4(complexmath_f32, arm_cmplx_dot_prod_f32, 3, in_com1, in_com2, ref_dot_prod_3,
3);
DEFINE_TEST_VARIANT4(complexmath_f32, arm_cmplx_dot_prod_f32, 8, in_com1, in_com2, ref_dot_prod_4n,
8);
DEFINE_TEST_VARIANT4(complexmath_f32, arm_cmplx_dot_prod_f32, 11, in_com1, in_com2,
ref_dot_prod_4n1, 11);
static void test_arm_cmplx_mag_f32(
const uint32_t *input1, const uint32_t *ref, size_t length)
{
float32_t *output;
/* Allocate output buffer */
output = malloc(length * sizeof(float32_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Run test function */
arm_cmplx_mag_f32((float32_t *)input1, output, length);
/* Validate output */
zassert_true(
test_snr_error_f32(length, output, (float32_t *)ref,
SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_rel_error_f32(length, output, (float32_t *)ref,
REL_ERROR_THRESH),
ASSERT_MSG_REL_ERROR_LIMIT_EXCEED);
/* Free output buffer */
free(output);
}
DEFINE_TEST_VARIANT3(complexmath_f32, arm_cmplx_mag_f32, 3, in_com1, ref_mag, 3);
DEFINE_TEST_VARIANT3(complexmath_f32, arm_cmplx_mag_f32, 8, in_com1, ref_mag, 8);
DEFINE_TEST_VARIANT3(complexmath_f32, arm_cmplx_mag_f32, 11, in_com1, ref_mag, 11);
static void test_arm_cmplx_mag_squared_f32(
const uint32_t *input1, const uint32_t *ref, size_t length)
{
float32_t *output;
/* Allocate output buffer */
output = malloc(length * sizeof(float32_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Run test function */
arm_cmplx_mag_squared_f32((float32_t *)input1, output, length);
/* Validate output */
zassert_true(
test_snr_error_f32(length, output, (float32_t *)ref,
SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_rel_error_f32(length, output, (float32_t *)ref,
REL_ERROR_THRESH),
ASSERT_MSG_REL_ERROR_LIMIT_EXCEED);
/* Free output buffer */
free(output);
}
DEFINE_TEST_VARIANT3(complexmath_f32, arm_cmplx_mag_squared_f32, 3, in_com1, ref_mag_squared, 3);
DEFINE_TEST_VARIANT3(complexmath_f32, arm_cmplx_mag_squared_f32, 8, in_com1, ref_mag_squared, 8);
DEFINE_TEST_VARIANT3(complexmath_f32, arm_cmplx_mag_squared_f32, 11, in_com1, ref_mag_squared, 11);
static void test_arm_cmplx_mult_cmplx_f32(
const uint32_t *input1, const uint32_t *input2, const uint32_t *ref,
size_t length)
{
size_t buf_length;
float32_t *output;
/* Complex number buffer length is twice the data length */
buf_length = 2 * length;
/* Allocate output buffer */
output = malloc(buf_length * sizeof(float32_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Run test function */
arm_cmplx_mult_cmplx_f32(
(float32_t *)input1, (float32_t *)input2, output, length);
/* Validate output */
zassert_true(
test_snr_error_f32(buf_length, output, (float32_t *)ref,
SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_rel_error_f32(buf_length, output, (float32_t *)ref,
REL_ERROR_THRESH),
ASSERT_MSG_REL_ERROR_LIMIT_EXCEED);
/* Free output buffer */
free(output);
}
DEFINE_TEST_VARIANT4(complexmath_f32, arm_cmplx_mult_cmplx_f32, 3, in_com1, in_com2, ref_mult_cmplx,
3);
DEFINE_TEST_VARIANT4(complexmath_f32, arm_cmplx_mult_cmplx_f32, 8, in_com1, in_com2, ref_mult_cmplx,
8);
DEFINE_TEST_VARIANT4(complexmath_f32, arm_cmplx_mult_cmplx_f32, 11, in_com1, in_com2,
ref_mult_cmplx, 11);
static void test_arm_cmplx_mult_real_f32(
const uint32_t *input1, const uint32_t *input2, const uint32_t *ref,
size_t length)
{
size_t buf_length;
float32_t *output;
/* Complex number buffer length is twice the data length */
buf_length = 2 * length;
/* Allocate output buffer */
output = malloc(buf_length * sizeof(float32_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Run test function */
arm_cmplx_mult_real_f32(
(float32_t *)input1, (float32_t *)input2, output, length);
/* Validate output */
zassert_true(
test_snr_error_f32(
buf_length, output, (float32_t *)ref,
SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_rel_error_f32(
buf_length, output, (float32_t *)ref,
REL_ERROR_THRESH),
ASSERT_MSG_REL_ERROR_LIMIT_EXCEED);
/* Free output buffer */
free(output);
}
DEFINE_TEST_VARIANT4(complexmath_f32, arm_cmplx_mult_real_f32, 3, in_com1, in_com3, ref_mult_real,
3);
DEFINE_TEST_VARIANT4(complexmath_f32, arm_cmplx_mult_real_f32, 8, in_com1, in_com3, ref_mult_real,
8);
DEFINE_TEST_VARIANT4(complexmath_f32, arm_cmplx_mult_real_f32, 11, in_com1, in_com3, ref_mult_real,
11);