zephyr/drivers/i2c/i2c_bitbang.c
Bas van Loon e7dd7abc0e drivers: i2c: Add support for clock stretching in the i2c-gpio module.
Some I2C peripherals like TI charger or gauge chips need support for I2C
clock stretching. This patch includes that and makes these modules
usable with I2C emulation over GPIO.

Signed-off-by: Bas van Loon <bas@arch-embedded.com>
2025-05-31 06:55:10 -04:00

333 lines
7.8 KiB
C

/*
* Copyright (c) 2017 Linaro Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Software driven 'bit-banging' library for I2C
*
* This code implements the I2C single master protocol in software by directly
* manipulating the levels of the SCL and SDA lines of an I2C bus. It supports
* the Standard-mode and Fast-mode speeds and doesn't support optional
* protocol feature like 10-bit addresses or clock stretching.
*
* Timings and protocol are based Rev. 7 of the I2C specification:
* https://www.nxp.com/docs/en/user-guide/UM10204.pdf
*/
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/sys/util.h>
#include "i2c_bitbang.h"
/*
* Indexes into delay table for each part of I2C timing waveform we are
* interested in. In practice, for Standard and Fast modes, there are only two
* different numerical values (T_LOW and T_HIGH) so we alias the others to
* these. (Actually, we're simplifying a little, T_SU_STA could be T_HIGH on
* Fast mode)
*/
#define T_LOW 0
#define T_HIGH 1
#define T_SU_STA T_LOW
#define T_HD_STA T_HIGH
#define T_SU_STP T_HIGH
#define T_BUF T_LOW
#define NS_TO_SYS_CLOCK_HW_CYCLES(ns) \
((uint64_t)sys_clock_hw_cycles_per_sec() * (ns) / NSEC_PER_SEC + 1)
int i2c_bitbang_configure(struct i2c_bitbang *context, uint32_t dev_config)
{
/* Check for features we don't support */
if (I2C_ADDR_10_BITS & dev_config) {
return -ENOTSUP;
}
/* Setup speed to use */
switch (I2C_SPEED_GET(dev_config)) {
case I2C_SPEED_STANDARD:
context->delays[T_LOW] = NS_TO_SYS_CLOCK_HW_CYCLES(4700);
context->delays[T_HIGH] = NS_TO_SYS_CLOCK_HW_CYCLES(4000);
break;
case I2C_SPEED_FAST:
context->delays[T_LOW] = NS_TO_SYS_CLOCK_HW_CYCLES(1300);
context->delays[T_HIGH] = NS_TO_SYS_CLOCK_HW_CYCLES(600);
break;
default:
return -ENOTSUP;
}
context->dev_config = dev_config;
return 0;
}
int i2c_bitbang_get_config(struct i2c_bitbang *context, uint32_t *config)
{
if (context->dev_config == 0) {
return -EIO;
}
*config = context->dev_config;
return 0;
}
static void i2c_set_scl(struct i2c_bitbang *context, int state)
{
context->io->set_scl(context->io_context, state);
#ifdef CONFIG_I2C_GPIO_CLOCK_STRETCHING
if (state == 1) {
/* Wait for slave to release the clock */
WAIT_FOR(context->io->get_scl(context->io_context) != 0,
CONFIG_I2C_GPIO_CLOCK_STRETCHING_TIMEOUT_US,
;);
}
#endif
}
static void i2c_set_sda(struct i2c_bitbang *context, int state)
{
context->io->set_sda(context->io_context, state);
}
static int i2c_get_sda(struct i2c_bitbang *context)
{
return context->io->get_sda(context->io_context);
}
static void i2c_delay(unsigned int cycles_to_wait)
{
uint32_t start = k_cycle_get_32();
/* Wait until the given number of cycles have passed */
while (k_cycle_get_32() - start < cycles_to_wait) {
}
}
static void i2c_start(struct i2c_bitbang *context)
{
if (!i2c_get_sda(context)) {
/*
* SDA is already low, so we need to do something to make it
* high. Try pulsing clock low to get slave to release SDA.
*/
i2c_set_scl(context, 0);
i2c_delay(context->delays[T_LOW]);
i2c_set_scl(context, 1);
i2c_delay(context->delays[T_SU_STA]);
}
i2c_set_sda(context, 0);
i2c_delay(context->delays[T_HD_STA]);
i2c_set_scl(context, 0);
i2c_delay(context->delays[T_LOW]);
}
static void i2c_repeated_start(struct i2c_bitbang *context)
{
i2c_set_sda(context, 1);
i2c_set_scl(context, 1);
i2c_delay(context->delays[T_HIGH]);
i2c_delay(context->delays[T_SU_STA]);
i2c_start(context);
}
static void i2c_stop(struct i2c_bitbang *context)
{
i2c_set_sda(context, 0);
i2c_delay(context->delays[T_LOW]);
i2c_set_scl(context, 1);
i2c_delay(context->delays[T_HIGH]);
i2c_delay(context->delays[T_SU_STP]);
i2c_set_sda(context, 1);
i2c_delay(context->delays[T_BUF]); /* In case we start again too soon */
}
static void i2c_write_bit(struct i2c_bitbang *context, int bit)
{
/* SDA hold time is zero, so no need for a delay here */
i2c_set_sda(context, bit);
i2c_set_scl(context, 1);
i2c_delay(context->delays[T_HIGH]);
i2c_set_scl(context, 0);
i2c_delay(context->delays[T_LOW]);
}
static bool i2c_read_bit(struct i2c_bitbang *context)
{
bool bit;
/* SDA hold time is zero, so no need for a delay here */
i2c_set_sda(context, 1); /* Stop driving low, so slave has control */
i2c_set_scl(context, 1);
i2c_delay(context->delays[T_HIGH]);
bit = i2c_get_sda(context);
i2c_set_scl(context, 0);
i2c_delay(context->delays[T_LOW]);
return bit;
}
static bool i2c_write_byte(struct i2c_bitbang *context, uint8_t byte)
{
uint8_t mask = 1 << 7;
do {
i2c_write_bit(context, byte & mask);
} while (mask >>= 1);
/* Return inverted ACK bit, i.e. 'true' for ACK, 'false' for NACK */
return !i2c_read_bit(context);
}
static uint8_t i2c_read_byte(struct i2c_bitbang *context)
{
unsigned int byte = 1U;
do {
byte <<= 1;
byte |= i2c_read_bit(context);
} while (!(byte & (1 << 8)));
return byte;
}
int i2c_bitbang_transfer(struct i2c_bitbang *context,
struct i2c_msg *msgs, uint8_t num_msgs,
uint16_t slave_address)
{
uint8_t *buf, *buf_end;
unsigned int flags;
int result = -EIO;
if (!num_msgs) {
return 0;
}
/* We want an initial Start condition */
flags = I2C_MSG_RESTART;
/* Make sure we're in a good state so slave recognises the Start */
i2c_set_scl(context, 1);
flags |= I2C_MSG_STOP;
do {
/* Stop flag from previous message? */
if (flags & I2C_MSG_STOP) {
i2c_stop(context);
}
/* Forget old flags except start flag */
flags &= I2C_MSG_RESTART;
/* Start condition? */
if (flags & I2C_MSG_RESTART) {
i2c_start(context);
} else if (msgs->flags & I2C_MSG_RESTART) {
i2c_repeated_start(context);
}
/* Get flags for new message */
flags |= msgs->flags;
/* Send address after any Start condition */
if (flags & I2C_MSG_RESTART) {
unsigned int byte0 = slave_address << 1;
byte0 |= (flags & I2C_MSG_RW_MASK) == I2C_MSG_READ;
if (!i2c_write_byte(context, byte0)) {
goto finish; /* No ACK received */
}
flags &= ~I2C_MSG_RESTART;
}
/* Transfer data */
buf = msgs->buf;
buf_end = buf + msgs->len;
if ((flags & I2C_MSG_RW_MASK) == I2C_MSG_READ) {
/* Read */
while (buf < buf_end) {
*buf++ = i2c_read_byte(context);
/* ACK the byte, except for the last one */
i2c_write_bit(context, buf == buf_end);
}
} else {
/* Write */
while (buf < buf_end) {
if (!i2c_write_byte(context, *buf++)) {
goto finish; /* No ACK received */
}
}
}
/* Next message */
msgs++;
num_msgs--;
} while (num_msgs);
/* Complete without error */
result = 0;
finish:
i2c_stop(context);
return result;
}
int i2c_bitbang_recover_bus(struct i2c_bitbang *context)
{
int i;
/*
* The I2C-bus specification and user manual (NXP UM10204
* rev. 6, section 3.1.16) suggests the master emit 9 SCL
* clock pulses to recover the bus.
*
* The Linux kernel I2C bitbang recovery functionality issues
* a START condition followed by 9 STOP conditions.
*
* Other I2C slave devices (e.g. Microchip ATSHA204a) suggest
* issuing a START condition followed by 9 SCL clock pulses
* with SDA held high/floating, a REPEATED START condition,
* and a STOP condition.
*
* The latter is what is implemented here.
*/
/* Start condition */
i2c_start(context);
/* 9 cycles of SCL with SDA held high */
for (i = 0; i < 9; i++) {
i2c_write_bit(context, 1);
}
/* Another start condition followed by a stop condition */
i2c_repeated_start(context);
i2c_stop(context);
/* Check if bus is clear */
if (i2c_get_sda(context)) {
return 0;
} else {
return -EBUSY;
}
}
void i2c_bitbang_init(struct i2c_bitbang *context,
const struct i2c_bitbang_io *io, void *io_context)
{
context->io = io;
context->io_context = io_context;
i2c_bitbang_configure(context, I2C_SPEED_STANDARD << I2C_SPEED_SHIFT);
}