zephyr/tests/lib/cmsis_dsp/complexmath/src/q31.c
Gerard Marull-Paretas 79e6b0e0f6 includes: prefer <zephyr/kernel.h> over <zephyr/zephyr.h>
As of today <zephyr/zephyr.h> is 100% equivalent to <zephyr/kernel.h>.
This patch proposes to then include <zephyr/kernel.h> instead of
<zephyr/zephyr.h> since it is more clear that you are including the
Kernel APIs and (probably) nothing else. <zephyr/zephyr.h> sounds like a
catch-all header that may be confusing. Most applications need to
include a bunch of other things to compile, e.g. driver headers or
subsystem headers like BT, logging, etc.

The idea of a catch-all header in Zephyr is probably not feasible
anyway. Reason is that Zephyr is not a library, like it could be for
example `libpython`. Zephyr provides many utilities nowadays: a kernel,
drivers, subsystems, etc and things will likely grow. A catch-all header
would be massive, difficult to keep up-to-date. It is also likely that
an application will only build a small subset. Note that subsystem-level
headers may use a catch-all approach to make things easier, though.

NOTE: This patch is **NOT** removing the header, just removing its usage
in-tree. I'd advocate for its deprecation (add a #warning on it), but I
understand many people will have concerns.

Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
2022-09-05 16:31:47 +02:00

222 lines
6.4 KiB
C

/*
* Copyright (c) 2020 Stephanos Ioannidis <root@stephanos.io>
* Copyright (C) 2010-2020 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/ztest.h>
#include <zephyr/kernel.h>
#include <stdlib.h>
#include <arm_math.h>
#include "../../common/test_common.h"
#include "q31.pat"
#define SNR_ERROR_THRESH ((float32_t)100)
#define ABS_ERROR_THRESH_Q31 ((q31_t)100)
#define ABS_ERROR_THRESH_Q63 ((q63_t)(1 << 18))
ZTEST_SUITE(complexmath_q31, NULL, NULL, NULL, NULL, NULL);
static void test_arm_cmplx_conj_q31(
const q31_t *input1, const q31_t *ref, size_t length)
{
size_t buf_length;
q31_t *output;
/* Complex number buffer length is twice the data length */
buf_length = 2 * length;
/* Allocate output buffer */
output = malloc(buf_length * sizeof(q31_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Run test function */
arm_cmplx_conj_q31(input1, output, length);
/* Validate output */
zassert_true(
test_snr_error_q31(buf_length, output, ref, SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_near_equal_q31(buf_length, output, ref,
ABS_ERROR_THRESH_Q31),
ASSERT_MSG_ABS_ERROR_LIMIT_EXCEED);
/* Free output buffer */
free(output);
}
DEFINE_TEST_VARIANT3(complexmath_q31, arm_cmplx_conj_q31, 3, in_com1, ref_conj, 3);
DEFINE_TEST_VARIANT3(complexmath_q31, arm_cmplx_conj_q31, 8, in_com1, ref_conj, 8);
DEFINE_TEST_VARIANT3(complexmath_q31, arm_cmplx_conj_q31, 11, in_com1, ref_conj, 11);
static void test_arm_cmplx_dot_prod_q31(
const q31_t *input1, const q31_t *input2, const q63_t *ref,
size_t length)
{
q63_t *output;
/* Allocate output buffer */
output = malloc(2 * sizeof(q63_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Run test function */
arm_cmplx_dot_prod_q31(input1, input2, length, &output[0], &output[1]);
/* Validate output */
zassert_true(
test_snr_error_q63(2, output, ref, SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_near_equal_q63(2, output, ref, ABS_ERROR_THRESH_Q63),
ASSERT_MSG_ABS_ERROR_LIMIT_EXCEED);
/* Free output buffer */
free(output);
}
DEFINE_TEST_VARIANT4(complexmath_q31, arm_cmplx_dot_prod_q31, 3, in_com1, in_com2, ref_dot_prod_3,
3);
DEFINE_TEST_VARIANT4(complexmath_q31, arm_cmplx_dot_prod_q31, 8, in_com1, in_com2, ref_dot_prod_4n,
8);
DEFINE_TEST_VARIANT4(complexmath_q31, arm_cmplx_dot_prod_q31, 11, in_com1, in_com2,
ref_dot_prod_4n1, 11);
static void test_arm_cmplx_mag_q31(
const q31_t *input1, const q31_t *ref, size_t length)
{
q31_t *output;
/* Allocate output buffer */
output = malloc(length * sizeof(q31_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Run test function */
arm_cmplx_mag_q31(input1, output, length);
/* Validate output */
zassert_true(
test_snr_error_q31(length, output, ref, SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_near_equal_q31(length, output, ref, ABS_ERROR_THRESH_Q31),
ASSERT_MSG_ABS_ERROR_LIMIT_EXCEED);
/* Free output buffer */
free(output);
}
DEFINE_TEST_VARIANT3(complexmath_q31, arm_cmplx_mag_q31, 3, in_com1, ref_mag, 3);
DEFINE_TEST_VARIANT3(complexmath_q31, arm_cmplx_mag_q31, 8, in_com1, ref_mag, 8);
DEFINE_TEST_VARIANT3(complexmath_q31, arm_cmplx_mag_q31, 11, in_com1, ref_mag, 11);
static void test_arm_cmplx_mag_squared_q31(
const q31_t *input1, const q31_t *ref, size_t length)
{
q31_t *output;
/* Allocate output buffer */
output = malloc(length * sizeof(q31_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Run test function */
arm_cmplx_mag_squared_q31(input1, output, length);
/* Validate output */
zassert_true(
test_snr_error_q31(length, output, ref, SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_near_equal_q31(length, output, ref, ABS_ERROR_THRESH_Q31),
ASSERT_MSG_ABS_ERROR_LIMIT_EXCEED);
/* Free output buffer */
free(output);
}
DEFINE_TEST_VARIANT3(complexmath_q31, arm_cmplx_mag_squared_q31, 3, in_com1, ref_mag_squared, 3);
DEFINE_TEST_VARIANT3(complexmath_q31, arm_cmplx_mag_squared_q31, 8, in_com1, ref_mag_squared, 8);
DEFINE_TEST_VARIANT3(complexmath_q31, arm_cmplx_mag_squared_q31, 11, in_com1, ref_mag_squared, 11);
static void test_arm_cmplx_mult_cmplx_q31(
const q31_t *input1, const q31_t *input2, const q31_t *ref,
size_t length)
{
size_t buf_length;
q31_t *output;
/* Complex number buffer length is twice the data length */
buf_length = 2 * length;
/* Allocate output buffer */
output = malloc(buf_length * sizeof(q31_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Run test function */
arm_cmplx_mult_cmplx_q31(input1, input2, output, length);
/* Validate output */
zassert_true(
test_snr_error_q31(buf_length, output, ref, SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_near_equal_q31(buf_length, output, ref,
ABS_ERROR_THRESH_Q31),
ASSERT_MSG_ABS_ERROR_LIMIT_EXCEED);
/* Free output buffer */
free(output);
}
DEFINE_TEST_VARIANT4(complexmath_q31, arm_cmplx_mult_cmplx_q31, 3, in_com1, in_com2, ref_mult_cmplx,
3);
DEFINE_TEST_VARIANT4(complexmath_q31, arm_cmplx_mult_cmplx_q31, 8, in_com1, in_com2, ref_mult_cmplx,
8);
DEFINE_TEST_VARIANT4(complexmath_q31, arm_cmplx_mult_cmplx_q31, 11, in_com1, in_com2,
ref_mult_cmplx, 11);
static void test_arm_cmplx_mult_real_q31(
const q31_t *input1, const q31_t *input2, const q31_t *ref,
size_t length)
{
size_t buf_length;
q31_t *output;
/* Complex number buffer length is twice the data length */
buf_length = 2 * length;
/* Allocate output buffer */
output = malloc(buf_length * sizeof(q31_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Run test function */
arm_cmplx_mult_real_q31(input1, input2, output, length);
/* Validate output */
zassert_true(
test_snr_error_q31(buf_length, output, ref, SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_near_equal_q31(buf_length, output, ref,
ABS_ERROR_THRESH_Q31),
ASSERT_MSG_ABS_ERROR_LIMIT_EXCEED);
/* Free output buffer */
free(output);
}
DEFINE_TEST_VARIANT4(complexmath_q31, arm_cmplx_mult_real_q31, 3, in_com1, in_com3, ref_mult_real,
3);
DEFINE_TEST_VARIANT4(complexmath_q31, arm_cmplx_mult_real_q31, 8, in_com1, in_com3, ref_mult_real,
8);
DEFINE_TEST_VARIANT4(complexmath_q31, arm_cmplx_mult_real_q31, 11, in_com1, in_com3, ref_mult_real,
11);