User mode can't be trusted to provide the kernel buffers for internal use. The syscall for k_pipe_init() has been removed in favor of a new API to draw the buffer memory from the calling thread's resource pool. K_PIPE_DEFINE() now properly locates the allocated buffer into kernel memory. Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
207 lines
5.1 KiB
C
207 lines
5.1 KiB
C
/*
|
|
* Copyright (c) 2016 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @addtogroup t_pipe_api
|
|
* @{
|
|
* @defgroup t_pipe_api_basic test_pipe_api_basic
|
|
* @brief TestPurpose: verify zephyr pipe apis under different context
|
|
* - API coverage
|
|
* -# k_pipe_init K_PIPE_DEFINE
|
|
* -# k_pipe_put
|
|
* -# k_pipe_get
|
|
* @}
|
|
*/
|
|
|
|
#include <ztest.h>
|
|
|
|
#define STACK_SIZE 1024
|
|
#define PIPE_LEN 16
|
|
#define BYTES_TO_WRITE 4
|
|
#define BYTES_TO_READ BYTES_TO_WRITE
|
|
K_MEM_POOL_DEFINE(mpool, BYTES_TO_WRITE, PIPE_LEN, 1, BYTES_TO_WRITE);
|
|
|
|
static unsigned char __aligned(4) data[] = "abcd1234$%^&PIPE";
|
|
/**TESTPOINT: init via K_PIPE_DEFINE*/
|
|
K_PIPE_DEFINE(kpipe, PIPE_LEN, 4);
|
|
__kernel struct k_pipe pipe;
|
|
|
|
K_THREAD_STACK_DEFINE(tstack, STACK_SIZE);
|
|
__kernel struct k_thread tdata;
|
|
K_SEM_DEFINE(end_sema, 0, 1);
|
|
|
|
/* By design, only two blocks. We should never need more than that, one
|
|
* to allocate the pipe object, one for its buffer. Both should be auto-
|
|
* released when the thread exits
|
|
*/
|
|
K_MEM_POOL_DEFINE(test_pool, 128, 128, 2, 4);
|
|
|
|
static void tpipe_put(struct k_pipe *ppipe)
|
|
{
|
|
size_t to_wt, wt_byte = 0;
|
|
|
|
for (int i = 0; i < PIPE_LEN; i += wt_byte) {
|
|
/**TESTPOINT: pipe put*/
|
|
to_wt = (PIPE_LEN - i) >= BYTES_TO_WRITE ?
|
|
BYTES_TO_WRITE : (PIPE_LEN - i);
|
|
zassert_false(k_pipe_put(ppipe, &data[i], to_wt,
|
|
&wt_byte, 1, K_NO_WAIT), NULL);
|
|
zassert_true(wt_byte == to_wt || wt_byte == 1, NULL);
|
|
}
|
|
}
|
|
|
|
static void tpipe_block_put(struct k_pipe *ppipe, struct k_sem *sema)
|
|
{
|
|
struct k_mem_block block;
|
|
|
|
for (int i = 0; i < PIPE_LEN; i += BYTES_TO_WRITE) {
|
|
/**TESTPOINT: pipe block put*/
|
|
zassert_equal(k_mem_pool_alloc(&mpool, &block, BYTES_TO_WRITE,
|
|
K_NO_WAIT), 0, NULL);
|
|
memcpy(block.data, &data[i], BYTES_TO_WRITE);
|
|
k_pipe_block_put(ppipe, &block, BYTES_TO_WRITE, sema);
|
|
if (sema) {
|
|
k_sem_take(sema, K_FOREVER);
|
|
}
|
|
k_mem_pool_free(&block);
|
|
}
|
|
}
|
|
|
|
static void tpipe_get(struct k_pipe *ppipe)
|
|
{
|
|
unsigned char rx_data[PIPE_LEN];
|
|
size_t to_rd, rd_byte = 0;
|
|
|
|
/*get pipe data from "pipe_put"*/
|
|
for (int i = 0; i < PIPE_LEN; i += rd_byte) {
|
|
/**TESTPOINT: pipe get*/
|
|
to_rd = (PIPE_LEN - i) >= BYTES_TO_READ ?
|
|
BYTES_TO_READ : (PIPE_LEN - i);
|
|
zassert_false(k_pipe_get(ppipe, &rx_data[i], to_rd,
|
|
&rd_byte, 1, K_FOREVER), NULL);
|
|
zassert_true(rd_byte == to_rd || rd_byte == 1, NULL);
|
|
}
|
|
for (int i = 0; i < PIPE_LEN; i++) {
|
|
zassert_equal(rx_data[i], data[i], NULL);
|
|
}
|
|
}
|
|
|
|
static void tThread_entry(void *p1, void *p2, void *p3)
|
|
{
|
|
tpipe_get((struct k_pipe *)p1);
|
|
k_sem_give(&end_sema);
|
|
|
|
tpipe_put((struct k_pipe *)p1);
|
|
k_sem_give(&end_sema);
|
|
}
|
|
|
|
static void tThread_block_put(void *p1, void *p2, void *p3)
|
|
{
|
|
tpipe_block_put((struct k_pipe *)p1, (struct k_sem *)p2);
|
|
k_sem_give(&end_sema);
|
|
}
|
|
|
|
static void tpipe_thread_thread(struct k_pipe *ppipe)
|
|
{
|
|
/**TESTPOINT: thread-thread data passing via pipe*/
|
|
k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
|
|
tThread_entry, ppipe, NULL, NULL,
|
|
K_PRIO_PREEMPT(0),
|
|
K_INHERIT_PERMS | K_USER, 0);
|
|
tpipe_put(ppipe);
|
|
k_sem_take(&end_sema, K_FOREVER);
|
|
|
|
k_sem_take(&end_sema, K_FOREVER);
|
|
tpipe_get(ppipe);
|
|
|
|
/* clear the spawned thread avoid side effect */
|
|
k_thread_abort(tid);
|
|
}
|
|
|
|
/*test cases*/
|
|
void test_pipe_thread2thread(void)
|
|
{
|
|
/**TESTPOINT: test k_pipe_init pipe*/
|
|
|
|
k_pipe_init(&pipe, data, PIPE_LEN);
|
|
tpipe_thread_thread(&pipe);
|
|
|
|
/**TESTPOINT: test K_PIPE_DEFINE pipe*/
|
|
tpipe_thread_thread(&kpipe);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
void test_pipe_user_thread2thread(void)
|
|
{
|
|
/**TESTPOINT: test k_pipe_init pipe*/
|
|
|
|
struct k_pipe *p = k_object_alloc(K_OBJ_PIPE);
|
|
|
|
zassert_true(p != NULL, NULL);
|
|
zassert_false(k_pipe_alloc_init(p, PIPE_LEN), NULL);
|
|
tpipe_thread_thread(&pipe);
|
|
|
|
/**TESTPOINT: test K_PIPE_DEFINE pipe*/
|
|
tpipe_thread_thread(&kpipe);
|
|
}
|
|
#endif
|
|
|
|
void test_pipe_block_put(void)
|
|
{
|
|
|
|
/**TESTPOINT: test k_pipe_block_put without semaphore*/
|
|
k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
|
|
tThread_block_put, &kpipe, NULL, NULL,
|
|
K_PRIO_PREEMPT(0), 0, 0);
|
|
|
|
k_sleep(10);
|
|
tpipe_get(&kpipe);
|
|
k_sem_take(&end_sema, K_FOREVER);
|
|
|
|
k_thread_abort(tid);
|
|
}
|
|
|
|
void test_pipe_block_put_sema(void)
|
|
{
|
|
struct k_sem sync_sema;
|
|
|
|
k_sem_init(&sync_sema, 0, 1);
|
|
/**TESTPOINT: test k_pipe_block_put with semaphore*/
|
|
k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
|
|
tThread_block_put, &pipe, &sync_sema, NULL,
|
|
K_PRIO_PREEMPT(0), 0, 0);
|
|
k_sleep(10);
|
|
tpipe_get(&pipe);
|
|
k_sem_take(&end_sema, K_FOREVER);
|
|
|
|
k_thread_abort(tid);
|
|
}
|
|
|
|
void test_pipe_get_put(void)
|
|
{
|
|
/**TESTPOINT: test API sequence: [get, put]*/
|
|
k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
|
|
tThread_block_put, &kpipe, NULL, NULL,
|
|
K_PRIO_PREEMPT(0), 0, 0);
|
|
|
|
/*get will be executed previor to put*/
|
|
tpipe_get(&kpipe);
|
|
k_sem_take(&end_sema, K_FOREVER);
|
|
|
|
k_thread_abort(tid);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
void test_resource_pool_auto_free(void)
|
|
{
|
|
/* Pool has 2 blocks, both should succeed if kernel object and pipe
|
|
* buffer are auto-freed when the allocating threads exit
|
|
*/
|
|
zassert_true(k_mem_pool_malloc(&test_pool, 64) != NULL, NULL);
|
|
zassert_true(k_mem_pool_malloc(&test_pool, 64) != NULL, NULL);
|
|
}
|
|
#endif
|