zephyr/arch/xtensa/include/kernel_arch_func.h
Flavio Ceolin 020df54ba4 xtensa: mmu: Initial implementation
Initial support for Xtensa MMU version 3. It is using a two level page
table based on fact that the page table is in the virtual space.  Only
the top level (page directory) is wired mapped in the TLB to avoid
second level page miss.

The mapped memory is completely fragmented in multiple sections, maybe
we find a better way in future.

The exception handler is where we effectively map the memory, the way it
works is:

1) SW try to access some memory address
2) The address is not mapped, so the MMU will try the auto-refill,
   looking the page table
3) The page table contents is not mapped (remember, just the top-level page
   is mapped)
4) An exception will be triggered, in the exception we try to read the
   portion of the page table that maps the original address
5) The address is not mapped, so the MMU will try again the auto-refill.
   This time though, the address is mapped by the top level page that is
   properly mapped. (The top-level page maps the page table itself).

Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
2023-05-23 08:54:29 +02:00

190 lines
5.7 KiB
C

/*
* Copyright (c) 2016 Wind River Systems, Inc.
* Copyright (c) 2016 Cadence Design Systems, Inc.
* Copyright (c) 2020 Intel Corporation
* SPDX-License-Identifier: Apache-2.0
*/
/* this file is only meant to be included by kernel_structs.h */
#ifndef ZEPHYR_ARCH_XTENSA_INCLUDE_KERNEL_ARCH_FUNC_H_
#define ZEPHYR_ARCH_XTENSA_INCLUDE_KERNEL_ARCH_FUNC_H_
#ifndef _ASMLANGUAGE
#include <kernel_internal.h>
#include <string.h>
#include <zephyr/cache.h>
#include <zsr.h>
#ifdef __cplusplus
extern "C" {
#endif
extern void z_xtensa_fatal_error(unsigned int reason, const z_arch_esf_t *esf);
K_KERNEL_STACK_ARRAY_DECLARE(z_interrupt_stacks, CONFIG_MP_MAX_NUM_CPUS,
CONFIG_ISR_STACK_SIZE);
static ALWAYS_INLINE void z_xtensa_kernel_init(void)
{
_cpu_t *cpu0 = &_kernel.cpus[0];
#ifdef CONFIG_KERNEL_COHERENCE
/* Make sure we don't have live data for unexpected cached
* regions due to boot firmware
*/
sys_cache_data_flush_and_invd_all();
/* Our cache top stash location might have junk in it from a
* pre-boot environment. Must be zero or valid!
*/
XTENSA_WSR(ZSR_FLUSH_STR, 0);
#endif
cpu0->nested = 0;
/* The asm2 scheme keeps the kernel pointer in a scratch SR
* (see zsr.h for generation specifics) for easy access. That
* saves 4 bytes of immediate value to store the address when
* compared to the legacy scheme. But in SMP this record is a
* per-CPU thing and having it stored in a SR already is a big
* win.
*/
XTENSA_WSR(ZSR_CPU_STR, cpu0);
}
static ALWAYS_INLINE void arch_kernel_init(void)
{
#ifndef CONFIG_XTENSA_MMU
/* This is called in z_xtensa_mmu_init() before z_cstart()
* so we do not need to call it again.
*/
z_xtensa_kernel_init();
#endif
#ifdef CONFIG_INIT_STACKS
memset(Z_KERNEL_STACK_BUFFER(z_interrupt_stacks[0]), 0xAA,
K_KERNEL_STACK_SIZEOF(z_interrupt_stacks[0]));
#endif
}
void xtensa_switch(void *switch_to, void **switched_from);
static inline void arch_switch(void *switch_to, void **switched_from)
{
return xtensa_switch(switch_to, switched_from);
}
#ifdef CONFIG_KERNEL_COHERENCE
static ALWAYS_INLINE void arch_cohere_stacks(struct k_thread *old_thread,
void *old_switch_handle,
struct k_thread *new_thread)
{
int32_t curr_cpu = _current_cpu->id;
size_t ostack = old_thread->stack_info.start;
size_t osz = old_thread->stack_info.size;
size_t osp = (size_t) old_switch_handle;
size_t nstack = new_thread->stack_info.start;
size_t nsz = new_thread->stack_info.size;
size_t nsp = (size_t) new_thread->switch_handle;
int zero = 0;
__asm__ volatile("wsr %0, " ZSR_FLUSH_STR :: "r"(zero));
if (old_switch_handle != NULL) {
int32_t a0save;
__asm__ volatile("mov %0, a0;"
"call0 xtensa_spill_reg_windows;"
"mov a0, %0"
: "=r"(a0save));
}
/* The following option ensures that a living thread will never
* be executed in a different CPU so we can safely return without
* invalidate and/or flush threads cache.
*/
if (IS_ENABLED(CONFIG_SCHED_CPU_MASK_PIN_ONLY)) {
return;
}
/* The "live" area (the region between the switch handle,
* which is the stack pointer, and the top of the stack
* memory) of the inbound stack needs to be invalidated if we
* last ran on another cpu: it may contain data that was
* modified there, and our cache may be stale.
*
* The corresponding "dead area" of the inbound stack can be
* ignored. We may have cached data in that region, but by
* definition any unused stack memory will always be written
* before being read (well, unless the code has an
* uninitialized data error) so our stale cache will be
* automatically overwritten as needed.
*/
if (curr_cpu != new_thread->arch.last_cpu) {
sys_cache_data_invd_range((void *)nsp, (nstack + nsz) - nsp);
}
old_thread->arch.last_cpu = curr_cpu;
/* Dummy threads appear at system initialization, but don't
* have stack_info data and will never be saved. Ignore.
*/
if (old_thread->base.thread_state & _THREAD_DUMMY) {
return;
}
/* For the outbound thread, we obviousy want to flush any data
* in the live area (for the benefit of whichever CPU runs
* this thread next). But we ALSO have to invalidate the dead
* region of the stack. Those lines may have DIRTY data in
* our own cache, and we cannot be allowed to write them back
* later on top of the stack's legitimate owner!
*
* This work comes in two flavors. In interrupts, the
* outgoing context has already been saved for us, so we can
* do the flush right here. In direct context switches, we
* are still using the stack, so we do the invalidate of the
* bottom here, (and flush the line containing SP to handle
* the overlap). The remaining flush of the live region
* happens in the assembly code once the context is pushed, up
* to the stack top stashed in a special register.
*/
if (old_switch_handle != NULL) {
sys_cache_data_flush_range((void *)osp, (ostack + osz) - osp);
sys_cache_data_invd_range((void *)ostack, osp - ostack);
} else {
/* When in a switch, our current stack is the outbound
* stack. Flush the single line containing the stack
* bottom (which is live data) before invalidating
* everything below that. Remember that the 16 bytes
* below our SP are the calling function's spill area
* and may be live too.
*/
__asm__ volatile("mov %0, a1" : "=r"(osp));
osp -= 16;
sys_cache_data_flush_range((void *)osp, 1);
sys_cache_data_invd_range((void *)ostack, osp - ostack);
uint32_t end = ostack + osz;
__asm__ volatile("wsr %0, " ZSR_FLUSH_STR :: "r"(end));
}
}
#endif
static inline bool arch_is_in_isr(void)
{
return arch_curr_cpu()->nested != 0U;
}
#ifdef __cplusplus
}
#endif
#endif /* _ASMLANGUAGE */
#endif /* ZEPHYR_ARCH_XTENSA_INCLUDE_KERNEL_ARCH_FUNC_H_ */