USB stack does not check api->lock() and api->unlock() return value and all UDC drivers block without timeout in its lock() and unlock() api implementations. There is no realistic way to handle lock() and unlock() errors without making USB device stack API unnecessarily complex. Remove the return type from lock() and unlock() to make it clear that the functions must not fail. Signed-off-by: Tomasz Moń <tomasz.mon@nordicsemi.no>
415 lines
11 KiB
C
415 lines
11 KiB
C
/*
|
|
* Copyright (c) 2023 Nordic Semiconductor ASA
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/*
|
|
* USB device controller (UDC) driver skeleton
|
|
*
|
|
* This is a skeleton for a device controller driver using the UDC API.
|
|
* Please use it as a starting point for a driver implementation for your
|
|
* USB device controller. Maintaining a common style, terminology and
|
|
* abbreviations will allow us to speed up reviews and reduce maintenance.
|
|
* Copy UDC driver skeleton, remove all unrelated comments and replace the
|
|
* copyright notice with your own.
|
|
*
|
|
* Typically, a driver implementation contains only a single source file,
|
|
* but the large list of e.g. register definitions should be in a separate
|
|
* .h file.
|
|
*
|
|
* If you want to define a helper macro, check if there is something similar
|
|
* in include/zephyr/sys/util.h or include/zephyr/usb/usb_ch9.h that you can use.
|
|
* Please keep all identifiers and logging messages concise and clear.
|
|
*/
|
|
|
|
#include "udc_common.h"
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/drivers/usb/udc.h>
|
|
|
|
#include <zephyr/logging/log.h>
|
|
LOG_MODULE_REGISTER(udc_skeleton, CONFIG_UDC_DRIVER_LOG_LEVEL);
|
|
|
|
/*
|
|
* Structure for holding controller configuration items that can remain in
|
|
* non-volatile memory. This is usually accessed as
|
|
* const struct udc_skeleton_config *config = dev->config;
|
|
*/
|
|
struct udc_skeleton_config {
|
|
size_t num_of_eps;
|
|
struct udc_ep_config *ep_cfg_in;
|
|
struct udc_ep_config *ep_cfg_out;
|
|
void (*make_thread)(const struct device *dev);
|
|
int speed_idx;
|
|
};
|
|
|
|
/*
|
|
* Structure to hold driver private data.
|
|
* Note that this is not accessible via dev->data, but as
|
|
* struct udc_skeleton_data *priv = udc_get_private(dev);
|
|
*/
|
|
struct udc_skeleton_data {
|
|
struct k_thread thread_data;
|
|
};
|
|
|
|
/*
|
|
* You can use one thread per driver instance model or UDC driver workqueue,
|
|
* whichever model suits your needs best. If you decide to use the UDC workqueue,
|
|
* enable Kconfig option UDC_WORKQUEUE and remove the handler below and
|
|
* caller from the UDC_SKELETON_DEVICE_DEFINE macro.
|
|
*/
|
|
static ALWAYS_INLINE void skeleton_thread_handler(void *const arg)
|
|
{
|
|
const struct device *dev = (const struct device *)arg;
|
|
|
|
LOG_DBG("Driver %p thread started", dev);
|
|
while (true) {
|
|
k_msleep(1000);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is called in the context of udc_ep_enqueue() and must
|
|
* not block. The driver can immediately claim the buffer if the queue is empty,
|
|
* but usually it is offloaded to a thread or workqueue to handle transfers
|
|
* in a single location. Please refer to existing driver implementations
|
|
* for examples.
|
|
*/
|
|
static int udc_skeleton_ep_enqueue(const struct device *dev,
|
|
struct udc_ep_config *const cfg,
|
|
struct net_buf *buf)
|
|
{
|
|
LOG_DBG("%p enqueue %p", dev, buf);
|
|
udc_buf_put(cfg, buf);
|
|
|
|
if (cfg->stat.halted) {
|
|
/*
|
|
* It is fine to enqueue a transfer for a halted endpoint,
|
|
* you need to make sure that transfers are retriggered when
|
|
* the halt is cleared.
|
|
*
|
|
* Always use the abbreviation 'ep' for the endpoint address
|
|
* and 'ep_idx' or 'ep_num' for the endpoint number identifiers.
|
|
* Although struct udc_ep_config uses address to be unambiguous
|
|
* in its context.
|
|
*/
|
|
LOG_DBG("ep 0x%02x halted", cfg->addr);
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is called in the context of udc_ep_dequeue()
|
|
* and must remove all requests from an endpoint queue
|
|
* Successful removal should be reported to the higher level with
|
|
* ECONNABORTED as the request result.
|
|
* It is up to the request owner to clean up or reuse the buffer.
|
|
*/
|
|
static int udc_skeleton_ep_dequeue(const struct device *dev,
|
|
struct udc_ep_config *const cfg)
|
|
{
|
|
unsigned int lock_key;
|
|
struct net_buf *buf;
|
|
|
|
lock_key = irq_lock();
|
|
|
|
buf = udc_buf_get_all(dev, cfg->addr);
|
|
if (buf) {
|
|
udc_submit_ep_event(dev, buf, -ECONNABORTED);
|
|
}
|
|
|
|
irq_unlock(lock_key);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Configure and make an endpoint ready for use.
|
|
* This is called in the context of udc_ep_enable() or udc_ep_enable_internal(),
|
|
* the latter of which may be used by the driver to enable control endpoints.
|
|
*/
|
|
static int udc_skeleton_ep_enable(const struct device *dev,
|
|
struct udc_ep_config *const cfg)
|
|
{
|
|
LOG_DBG("Enable ep 0x%02x", cfg->addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Opposite function to udc_skeleton_ep_enable(). udc_ep_disable_internal()
|
|
* may be used by the driver to disable control endpoints.
|
|
*/
|
|
static int udc_skeleton_ep_disable(const struct device *dev,
|
|
struct udc_ep_config *const cfg)
|
|
{
|
|
LOG_DBG("Disable ep 0x%02x", cfg->addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Halt endpoint. Halted endpoint should respond with a STALL handshake. */
|
|
static int udc_skeleton_ep_set_halt(const struct device *dev,
|
|
struct udc_ep_config *const cfg)
|
|
{
|
|
LOG_DBG("Set halt ep 0x%02x", cfg->addr);
|
|
|
|
cfg->stat.halted = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Opposite to halt endpoint. If there are requests in the endpoint queue,
|
|
* the next transfer should be prepared.
|
|
*/
|
|
static int udc_skeleton_ep_clear_halt(const struct device *dev,
|
|
struct udc_ep_config *const cfg)
|
|
{
|
|
LOG_DBG("Clear halt ep 0x%02x", cfg->addr);
|
|
cfg->stat.halted = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_skeleton_set_address(const struct device *dev, const uint8_t addr)
|
|
{
|
|
LOG_DBG("Set new address %u for %p", addr, dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_skeleton_host_wakeup(const struct device *dev)
|
|
{
|
|
LOG_DBG("Remote wakeup from %p", dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return actual USB device speed */
|
|
static enum udc_bus_speed udc_skeleton_device_speed(const struct device *dev)
|
|
{
|
|
struct udc_data *data = dev->data;
|
|
|
|
return data->caps.hs ? UDC_BUS_SPEED_HS : UDC_BUS_SPEED_FS;
|
|
}
|
|
|
|
static int udc_skeleton_enable(const struct device *dev)
|
|
{
|
|
LOG_DBG("Enable device %p", dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_skeleton_disable(const struct device *dev)
|
|
{
|
|
LOG_DBG("Enable device %p", dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Prepare and configure most of the parts, if the controller has a way
|
|
* of detecting VBUS activity it should be enabled here.
|
|
* Only udc_skeleton_enable() makes device visible to the host.
|
|
*/
|
|
static int udc_skeleton_init(const struct device *dev)
|
|
{
|
|
if (udc_ep_enable_internal(dev, USB_CONTROL_EP_OUT,
|
|
USB_EP_TYPE_CONTROL, 64, 0)) {
|
|
LOG_ERR("Failed to enable control endpoint");
|
|
return -EIO;
|
|
}
|
|
|
|
if (udc_ep_enable_internal(dev, USB_CONTROL_EP_IN,
|
|
USB_EP_TYPE_CONTROL, 64, 0)) {
|
|
LOG_ERR("Failed to enable control endpoint");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Shut down the controller completely */
|
|
static int udc_skeleton_shutdown(const struct device *dev)
|
|
{
|
|
if (udc_ep_disable_internal(dev, USB_CONTROL_EP_OUT)) {
|
|
LOG_ERR("Failed to disable control endpoint");
|
|
return -EIO;
|
|
}
|
|
|
|
if (udc_ep_disable_internal(dev, USB_CONTROL_EP_IN)) {
|
|
LOG_ERR("Failed to disable control endpoint");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is called once to initialize the controller and endpoints
|
|
* capabilities, and register endpoint structures.
|
|
*/
|
|
static int udc_skeleton_driver_preinit(const struct device *dev)
|
|
{
|
|
const struct udc_skeleton_config *config = dev->config;
|
|
struct udc_data *data = dev->data;
|
|
uint16_t mps = 1023;
|
|
int err;
|
|
|
|
/*
|
|
* You do not need to initialize it if your driver does not use
|
|
* udc_lock_internal() / udc_unlock_internal(), but implements its
|
|
* own mechanism.
|
|
*/
|
|
k_mutex_init(&data->mutex);
|
|
|
|
data->caps.rwup = true;
|
|
data->caps.mps0 = UDC_MPS0_64;
|
|
if (config->speed_idx == 2) {
|
|
data->caps.hs = true;
|
|
mps = 1024;
|
|
}
|
|
|
|
for (int i = 0; i < config->num_of_eps; i++) {
|
|
config->ep_cfg_out[i].caps.out = 1;
|
|
if (i == 0) {
|
|
config->ep_cfg_out[i].caps.control = 1;
|
|
config->ep_cfg_out[i].caps.mps = 64;
|
|
} else {
|
|
config->ep_cfg_out[i].caps.bulk = 1;
|
|
config->ep_cfg_out[i].caps.interrupt = 1;
|
|
config->ep_cfg_out[i].caps.iso = 1;
|
|
config->ep_cfg_out[i].caps.mps = mps;
|
|
}
|
|
|
|
config->ep_cfg_out[i].addr = USB_EP_DIR_OUT | i;
|
|
err = udc_register_ep(dev, &config->ep_cfg_out[i]);
|
|
if (err != 0) {
|
|
LOG_ERR("Failed to register endpoint");
|
|
return err;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < config->num_of_eps; i++) {
|
|
config->ep_cfg_in[i].caps.in = 1;
|
|
if (i == 0) {
|
|
config->ep_cfg_in[i].caps.control = 1;
|
|
config->ep_cfg_in[i].caps.mps = 64;
|
|
} else {
|
|
config->ep_cfg_in[i].caps.bulk = 1;
|
|
config->ep_cfg_in[i].caps.interrupt = 1;
|
|
config->ep_cfg_in[i].caps.iso = 1;
|
|
config->ep_cfg_in[i].caps.mps = mps;
|
|
}
|
|
|
|
config->ep_cfg_in[i].addr = USB_EP_DIR_IN | i;
|
|
err = udc_register_ep(dev, &config->ep_cfg_in[i]);
|
|
if (err != 0) {
|
|
LOG_ERR("Failed to register endpoint");
|
|
return err;
|
|
}
|
|
}
|
|
|
|
config->make_thread(dev);
|
|
LOG_INF("Device %p (max. speed %d)", dev, config->speed_idx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void udc_skeleton_lock(const struct device *dev)
|
|
{
|
|
udc_lock_internal(dev, K_FOREVER);
|
|
}
|
|
|
|
static void udc_skeleton_unlock(const struct device *dev)
|
|
{
|
|
udc_unlock_internal(dev);
|
|
}
|
|
|
|
/*
|
|
* UDC API structure.
|
|
* Note, you do not need to implement basic checks, these are done by
|
|
* the UDC common layer udc_common.c
|
|
*/
|
|
static const struct udc_api udc_skeleton_api = {
|
|
.lock = udc_skeleton_lock,
|
|
.unlock = udc_skeleton_unlock,
|
|
.device_speed = udc_skeleton_device_speed,
|
|
.init = udc_skeleton_init,
|
|
.enable = udc_skeleton_enable,
|
|
.disable = udc_skeleton_disable,
|
|
.shutdown = udc_skeleton_shutdown,
|
|
.set_address = udc_skeleton_set_address,
|
|
.host_wakeup = udc_skeleton_host_wakeup,
|
|
.ep_enable = udc_skeleton_ep_enable,
|
|
.ep_disable = udc_skeleton_ep_disable,
|
|
.ep_set_halt = udc_skeleton_ep_set_halt,
|
|
.ep_clear_halt = udc_skeleton_ep_clear_halt,
|
|
.ep_enqueue = udc_skeleton_ep_enqueue,
|
|
.ep_dequeue = udc_skeleton_ep_dequeue,
|
|
};
|
|
|
|
#define DT_DRV_COMPAT zephyr_udc_skeleton
|
|
|
|
/*
|
|
* A UDC driver should always be implemented as a multi-instance
|
|
* driver, even if your platform does not require it.
|
|
*/
|
|
#define UDC_SKELETON_DEVICE_DEFINE(n) \
|
|
K_THREAD_STACK_DEFINE(udc_skeleton_stack_##n, CONFIG_UDC_SKELETON); \
|
|
\
|
|
static void udc_skeleton_thread_##n(void *dev, void *arg1, void *arg2) \
|
|
{ \
|
|
skeleton_thread_handler(dev); \
|
|
} \
|
|
\
|
|
static void udc_skeleton_make_thread_##n(const struct device *dev) \
|
|
{ \
|
|
struct udc_skeleton_data *priv = udc_get_private(dev); \
|
|
\
|
|
k_thread_create(&priv->thread_data, \
|
|
udc_skeleton_stack_##n, \
|
|
K_THREAD_STACK_SIZEOF(udc_skeleton_stack_##n), \
|
|
udc_skeleton_thread_##n, \
|
|
(void *)dev, NULL, NULL, \
|
|
K_PRIO_COOP(CONFIG_UDC_SKELETON_THREAD_PRIORITY),\
|
|
K_ESSENTIAL, \
|
|
K_NO_WAIT); \
|
|
k_thread_name_set(&priv->thread_data, dev->name); \
|
|
} \
|
|
\
|
|
static struct udc_ep_config \
|
|
ep_cfg_out[DT_INST_PROP(n, num_bidir_endpoints)]; \
|
|
static struct udc_ep_config \
|
|
ep_cfg_in[DT_INST_PROP(n, num_bidir_endpoints)]; \
|
|
\
|
|
static const struct udc_skeleton_config udc_skeleton_config_##n = { \
|
|
.num_of_eps = DT_INST_PROP(n, num_bidir_endpoints), \
|
|
.ep_cfg_in = ep_cfg_out, \
|
|
.ep_cfg_out = ep_cfg_in, \
|
|
.make_thread = udc_skeleton_make_thread_##n, \
|
|
.speed_idx = DT_ENUM_IDX(DT_DRV_INST(n), maximum_speed), \
|
|
}; \
|
|
\
|
|
static struct udc_skeleton_data udc_priv_##n = { \
|
|
}; \
|
|
\
|
|
static struct udc_data udc_data_##n = { \
|
|
.mutex = Z_MUTEX_INITIALIZER(udc_data_##n.mutex), \
|
|
.priv = &udc_priv_##n, \
|
|
}; \
|
|
\
|
|
DEVICE_DT_INST_DEFINE(n, udc_skeleton_driver_preinit, NULL, \
|
|
&udc_data_##n, &udc_skeleton_config_##n, \
|
|
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
|
|
&udc_skeleton_api);
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(UDC_SKELETON_DEVICE_DEFINE)
|