zephyr/drivers/serial/uart_pl011.c
Xudong Zheng b783bc8448 drivers: serial: pl011: fix missing TX callback with FIFO enabled
When using the interrupt UART API, it is expected that the driver will
call the callback function repeatedly while TX interrupt is enabled.
However that is not necessarily the case with the FIFO is enabled.

If the application calls uart_fifo_fill() each time with only one byte
of data, the TX interrupt will never trigger. This is because the 1/8 TX
interrupt trigger threshold is never reached. For this reason, the
callback function should be called multiple times from software as
needed.

Fixes zephyrproject-rtos/zephyr#85479

Signed-off-by: Xudong Zheng <7pkvm5aw@slicealias.com>
2025-02-13 01:14:09 +01:00

738 lines
20 KiB
C

/*
* Copyright (c) 2018 Linaro Limited
* Copyright (c) 2022 Arm Limited (or its affiliates). All rights reserved.
* Copyright (c) 2023 Antmicro <www.antmicro.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT arm_pl011
#define SBSA_COMPAT arm_sbsa_uart
#include <string.h>
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/init.h>
#include <zephyr/device.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/sys/device_mmio.h>
#include <zephyr/sys/barrier.h>
#include <zephyr/irq.h>
#if defined(CONFIG_PINCTRL)
#include <zephyr/drivers/pinctrl.h>
#endif
#if defined(CONFIG_RESET)
#include <zephyr/drivers/reset.h>
#endif
#if defined(CONFIG_CLOCK_CONTROL)
#include <zephyr/drivers/clock_control.h>
#endif
#ifdef CONFIG_CPU_CORTEX_M
#include <cmsis_compiler.h>
#endif
#include "uart_pl011_registers.h"
#if defined(CONFIG_SOC_FAMILY_AMBIQ)
#include "uart_pl011_ambiq.h"
#endif
#if defined(CONFIG_SOC_SERIES_APOLLO3X)
#define PM_INST_GET(n) PM_DEVICE_DT_INST_GET(n)
#else
#define PM_INST_GET(n) NULL
#endif
#include "uart_pl011_raspberrypi_pico.h"
struct pl011_config {
DEVICE_MMIO_ROM;
#if defined(CONFIG_PINCTRL)
const struct pinctrl_dev_config *pincfg;
#endif
#if defined(CONFIG_RESET)
const struct reset_dt_spec reset;
#endif
#if defined(CONFIG_CLOCK_CONTROL)
const struct device *clock_dev;
clock_control_subsys_t clock_id;
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_config_func_t irq_config_func;
#endif
int (*clk_enable_func)(const struct device *dev, uint32_t clk);
int (*pwr_on_func)(void);
};
/* Device data structure */
struct pl011_data {
DEVICE_MMIO_RAM;
struct uart_config uart_cfg;
bool sbsa; /* SBSA mode */
uint32_t clk_freq;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
volatile bool sw_call_txdrdy;
uart_irq_callback_user_data_t irq_cb;
void *irq_cb_data;
#endif
};
static void pl011_enable(const struct device *dev)
{
get_uart(dev)->cr |= PL011_CR_UARTEN;
}
static void pl011_disable(const struct device *dev)
{
get_uart(dev)->cr &= ~PL011_CR_UARTEN;
}
static void pl011_enable_fifo(const struct device *dev)
{
get_uart(dev)->lcr_h |= PL011_LCRH_FEN;
}
static void pl011_disable_fifo(const struct device *dev)
{
get_uart(dev)->lcr_h &= ~PL011_LCRH_FEN;
}
static void pl011_set_flow_control(const struct device *dev, bool rts, bool cts)
{
if (rts) {
get_uart(dev)->cr |= PL011_CR_RTSEn;
} else {
get_uart(dev)->cr &= ~PL011_CR_RTSEn;
}
if (cts) {
get_uart(dev)->cr |= PL011_CR_CTSEn;
} else {
get_uart(dev)->cr &= ~PL011_CR_CTSEn;
}
}
static int pl011_set_baudrate(const struct device *dev,
uint32_t clk, uint32_t baudrate)
{
/* Avoiding float calculations, bauddiv is left shifted by 6 */
uint64_t bauddiv = (((uint64_t)clk) << PL011_FBRD_WIDTH)
/ (baudrate * 16U);
/* Valid bauddiv value
* uart_clk (min) >= 16 x baud_rate (max)
* uart_clk (max) <= 16 x 65535 x baud_rate (min)
*/
if ((bauddiv < (1u << PL011_FBRD_WIDTH))
|| (bauddiv > (65535u << PL011_FBRD_WIDTH))) {
return -EINVAL;
}
get_uart(dev)->ibrd = bauddiv >> PL011_FBRD_WIDTH;
get_uart(dev)->fbrd = bauddiv & ((1u << PL011_FBRD_WIDTH) - 1u);
barrier_dmem_fence_full();
/* In order to internally update the contents of ibrd or fbrd, a
* lcr_h write must always be performed at the end
* ARM DDI 0183F, Pg 3-13
*/
get_uart(dev)->lcr_h = get_uart(dev)->lcr_h;
return 0;
}
static bool pl011_is_readable(const struct device *dev)
{
struct pl011_data *data = dev->data;
if (!data->sbsa &&
(!(get_uart(dev)->cr & PL011_CR_UARTEN) || !(get_uart(dev)->cr & PL011_CR_RXE))) {
return false;
}
return (get_uart(dev)->fr & PL011_FR_RXFE) == 0U;
}
static int pl011_poll_in(const struct device *dev, unsigned char *c)
{
if (!pl011_is_readable(dev)) {
return -1;
}
/* got a character */
*c = (unsigned char)get_uart(dev)->dr;
return get_uart(dev)->rsr & PL011_RSR_ERROR_MASK;
}
static void pl011_poll_out(const struct device *dev,
unsigned char c)
{
/* Wait for space in FIFO */
while (get_uart(dev)->fr & PL011_FR_TXFF) {
; /* Wait */
}
/* Send a character */
get_uart(dev)->dr = (uint32_t)c;
}
static int pl011_err_check(const struct device *dev)
{
int errors = 0;
if (get_uart(dev)->rsr & PL011_RSR_ECR_OE) {
errors |= UART_ERROR_OVERRUN;
}
if (get_uart(dev)->rsr & PL011_RSR_ECR_BE) {
errors |= UART_BREAK;
}
if (get_uart(dev)->rsr & PL011_RSR_ECR_PE) {
errors |= UART_ERROR_PARITY;
}
if (get_uart(dev)->rsr & PL011_RSR_ECR_FE) {
errors |= UART_ERROR_FRAMING;
}
return errors;
}
static int pl011_runtime_configure_internal(const struct device *dev,
const struct uart_config *cfg,
bool disable)
{
struct pl011_data *data = dev->data;
uint32_t lcrh;
int ret = -ENOTSUP;
if (data->sbsa) {
goto out;
}
if (disable) {
pl011_disable(dev);
pl011_disable_fifo(dev);
}
lcrh = get_uart(dev)->lcr_h & ~(PL011_LCRH_FORMAT_MASK | PL011_LCRH_STP2);
switch (cfg->parity) {
case UART_CFG_PARITY_NONE:
lcrh &= ~(BIT(1) | BIT(2));
break;
case UART_CFG_PARITY_ODD:
lcrh |= PL011_LCRH_PARITY_ODD;
break;
case UART_CFG_PARITY_EVEN:
lcrh |= PL011_LCRH_PARTIY_EVEN;
break;
default:
goto enable;
}
switch (cfg->stop_bits) {
case UART_CFG_STOP_BITS_1:
lcrh &= ~(PL011_LCRH_STP2);
break;
case UART_CFG_STOP_BITS_2:
lcrh |= PL011_LCRH_STP2;
break;
default:
goto enable;
}
switch (cfg->data_bits) {
case UART_CFG_DATA_BITS_5:
lcrh |= PL011_LCRH_WLEN_SIZE(5) << PL011_LCRH_WLEN_SHIFT;
break;
case UART_CFG_DATA_BITS_6:
lcrh |= PL011_LCRH_WLEN_SIZE(6) << PL011_LCRH_WLEN_SHIFT;
break;
case UART_CFG_DATA_BITS_7:
lcrh |= PL011_LCRH_WLEN_SIZE(7) << PL011_LCRH_WLEN_SHIFT;
break;
case UART_CFG_DATA_BITS_8:
lcrh |= PL011_LCRH_WLEN_SIZE(8) << PL011_LCRH_WLEN_SHIFT;
break;
default:
goto enable;
}
switch (cfg->flow_ctrl) {
case UART_CFG_FLOW_CTRL_NONE:
pl011_set_flow_control(dev, false, false);
break;
case UART_CFG_FLOW_CTRL_RTS_CTS:
pl011_set_flow_control(dev, true, true);
break;
default:
goto enable;
}
/* Set baud rate */
ret = pl011_set_baudrate(dev, data->clk_freq, cfg->baudrate);
if (ret != 0) {
goto enable;
}
/* Update settings */
get_uart(dev)->lcr_h = lcrh;
memcpy(&data->uart_cfg, cfg, sizeof(data->uart_cfg));
enable:
if (disable) {
pl011_enable_fifo(dev);
pl011_enable(dev);
}
out:
return ret;
}
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int pl011_runtime_configure(const struct device *dev,
const struct uart_config *cfg)
{
return pl011_runtime_configure_internal(dev, cfg, true);
}
static int pl011_runtime_config_get(const struct device *dev,
struct uart_config *cfg)
{
struct pl011_data *data = dev->data;
*cfg = data->uart_cfg;
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int pl011_fifo_fill(const struct device *dev,
const uint8_t *tx_data, int len)
{
int num_tx = 0U;
while (!(get_uart(dev)->fr & PL011_FR_TXFF) && (len - num_tx > 0)) {
get_uart(dev)->dr = tx_data[num_tx++];
}
return num_tx;
}
static int pl011_fifo_read(const struct device *dev,
uint8_t *rx_data, const int len)
{
int num_rx = 0U;
while ((len - num_rx > 0) && !(get_uart(dev)->fr & PL011_FR_RXFE)) {
rx_data[num_rx++] = get_uart(dev)->dr;
}
return num_rx;
}
static void pl011_irq_tx_enable(const struct device *dev)
{
struct pl011_data *data = dev->data;
get_uart(dev)->imsc |= PL011_IMSC_TXIM;
if (data->sw_call_txdrdy) {
data->sw_call_txdrdy = false;
/* Verify if the callback has been registered */
if (data->irq_cb) {
/*
* Due to HW limitation, the first TX interrupt should
* be triggered by the software.
*
* PL011 TX interrupt is based on a transition through
* a level, rather than on the level itself[1]. So that,
* enable TX interrupt can not trigger TX interrupt if
* no data was filled to TX FIFO at the beginning.
*
* [1]: PrimeCell UART (PL011) Technical Reference Manual
* functional-overview/interrupts
*/
while (get_uart(dev)->imsc & PL011_IMSC_TXIM) {
data->irq_cb(dev, data->irq_cb_data);
}
}
}
}
static void pl011_irq_tx_disable(const struct device *dev)
{
struct pl011_data *data = dev->data;
data->sw_call_txdrdy = true;
get_uart(dev)->imsc &= ~PL011_IMSC_TXIM;
}
static int pl011_irq_tx_complete(const struct device *dev)
{
/* Check for UART is busy transmitting data. */
return ((get_uart(dev)->fr & PL011_FR_BUSY) == 0);
}
static int pl011_irq_tx_ready(const struct device *dev)
{
struct pl011_data *data = dev->data;
if (!data->sbsa && !(get_uart(dev)->cr & PL011_CR_TXE)) {
return false;
}
return ((get_uart(dev)->imsc & PL011_IMSC_TXIM) &&
/* Check for TX interrupt status is set or TX FIFO is empty. */
(get_uart(dev)->ris & PL011_RIS_TXRIS || get_uart(dev)->fr & PL011_FR_TXFE));
}
static void pl011_irq_rx_enable(const struct device *dev)
{
get_uart(dev)->imsc |= PL011_IMSC_RXIM | PL011_IMSC_RTIM;
}
static void pl011_irq_rx_disable(const struct device *dev)
{
get_uart(dev)->imsc &= ~(PL011_IMSC_RXIM | PL011_IMSC_RTIM);
}
static int pl011_irq_rx_ready(const struct device *dev)
{
struct pl011_data *data = dev->data;
if (!data->sbsa && !(get_uart(dev)->cr & PL011_CR_RXE)) {
return false;
}
return ((get_uart(dev)->imsc & PL011_IMSC_RXIM) &&
(!(get_uart(dev)->fr & PL011_FR_RXFE)));
}
static void pl011_irq_err_enable(const struct device *dev)
{
/* enable framing, parity, break, and overrun */
get_uart(dev)->imsc |= PL011_IMSC_ERROR_MASK;
}
static void pl011_irq_err_disable(const struct device *dev)
{
get_uart(dev)->imsc &= ~PL011_IMSC_ERROR_MASK;
}
static int pl011_irq_is_pending(const struct device *dev)
{
return pl011_irq_rx_ready(dev) || pl011_irq_tx_ready(dev);
}
static int pl011_irq_update(const struct device *dev)
{
return 1;
}
static void pl011_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct pl011_data *data = dev->data;
data->irq_cb = cb;
data->irq_cb_data = cb_data;
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static DEVICE_API(uart, pl011_driver_api) = {
.poll_in = pl011_poll_in,
.poll_out = pl011_poll_out,
.err_check = pl011_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = pl011_runtime_configure,
.config_get = pl011_runtime_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = pl011_fifo_fill,
.fifo_read = pl011_fifo_read,
.irq_tx_enable = pl011_irq_tx_enable,
.irq_tx_disable = pl011_irq_tx_disable,
.irq_tx_ready = pl011_irq_tx_ready,
.irq_rx_enable = pl011_irq_rx_enable,
.irq_rx_disable = pl011_irq_rx_disable,
.irq_tx_complete = pl011_irq_tx_complete,
.irq_rx_ready = pl011_irq_rx_ready,
.irq_err_enable = pl011_irq_err_enable,
.irq_err_disable = pl011_irq_err_disable,
.irq_is_pending = pl011_irq_is_pending,
.irq_update = pl011_irq_update,
.irq_callback_set = pl011_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
static int pl011_init(const struct device *dev)
{
const struct pl011_config *config = dev->config;
struct pl011_data *data = dev->data;
int ret;
DEVICE_MMIO_MAP(dev, K_MEM_CACHE_NONE);
#if defined(CONFIG_RESET)
if (config->reset.dev) {
ret = reset_line_toggle_dt(&config->reset);
if (ret) {
return ret;
}
}
#endif
#if defined(CONFIG_CLOCK_CONTROL)
if (config->clock_dev) {
clock_control_on(config->clock_dev, config->clock_id);
clock_control_get_rate(config->clock_dev, config->clock_id, &data->clk_freq);
}
#endif
/*
* If working in SBSA mode, we assume that UART is already configured,
* or does not require configuration at all (if UART is emulated by
* virtualization software).
*/
if (!data->sbsa) {
#if defined(CONFIG_PINCTRL)
ret = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (ret) {
return ret;
}
#endif
/* Call vendor-specific function to power on the peripheral */
if (config->pwr_on_func != NULL) {
ret = config->pwr_on_func();
}
/* disable the uart */
pl011_disable(dev);
pl011_disable_fifo(dev);
/* Call vendor-specific function to enable clock for the peripheral */
if (config->clk_enable_func != NULL) {
ret = config->clk_enable_func(dev, data->clk_freq);
if (ret) {
return ret;
}
}
pl011_runtime_configure_internal(dev, &data->uart_cfg, false);
/* Setting transmit and receive interrupt FIFO level */
get_uart(dev)->ifls = FIELD_PREP(PL011_IFLS_TXIFLSEL_M, TXIFLSEL_1_8_FULL)
| FIELD_PREP(PL011_IFLS_RXIFLSEL_M, RXIFLSEL_1_2_FULL);
/* Enabling the FIFOs */
pl011_enable_fifo(dev);
}
/* initialize all IRQs as masked */
get_uart(dev)->imsc = 0U;
get_uart(dev)->icr = PL011_IMSC_MASK_ALL;
if (!data->sbsa) {
get_uart(dev)->dmacr = 0U;
barrier_isync_fence_full();
get_uart(dev)->cr &= ~PL011_CR_SIREN;
get_uart(dev)->cr |= PL011_CR_RXE | PL011_CR_TXE;
barrier_isync_fence_full();
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
config->irq_config_func(dev);
data->sw_call_txdrdy = true;
#endif
if (!data->sbsa) {
pl011_enable(dev);
}
return 0;
}
#define COMPAT_SPECIFIC_FUNC_NAME(prefix, name) _CONCAT(_CONCAT(prefix, name), _)
/*
* The first element of compatible is used to determine the type.
* When compatible defines as "ambiq,uart", "arm,pl011",
* this macro expands to pwr_on_ambiq_uart_[n].
*/
#define COMPAT_SPECIFIC_PWR_ON_FUNC(n) \
_CONCAT(COMPAT_SPECIFIC_FUNC_NAME(pwr_on_, DT_INST_STRING_TOKEN_BY_IDX(n, compatible, 0)), \
n)
/*
* The first element of compatible is used to determine the type.
* When compatible defines as "ambiq,uart", "arm,pl011",
* this macro expands to clk_enable_ambiq_uart_[n].
*/
#define COMPAT_SPECIFIC_CLK_ENABLE_FUNC(n) \
_CONCAT(COMPAT_SPECIFIC_FUNC_NAME(clk_enable_, \
DT_INST_STRING_TOKEN_BY_IDX(n, compatible, 0)), n)
/*
* The first element of compatible is used to determine the type.
* When compatible defines as "ambiq,uart", "arm,pl011",
* this macro expands to AMBIQ_UART_DEFINE(n).
*/
#define COMPAT_SPECIFIC_DEFINE(n) \
_CONCAT(DT_INST_STRING_UPPER_TOKEN_BY_IDX(n, compatible, 0), _DEFINE)(n)
#define COMPAT_SPECIFIC_CLOCK_CTLR_SUBSYS_CELL(n) \
_CONCAT(DT_INST_STRING_UPPER_TOKEN_BY_IDX(n, compatible, 0), _CLOCK_CTLR_SUBSYS_CELL)
#if defined(CONFIG_PINCTRL)
#define PINCTRL_DEFINE(n) PINCTRL_DT_INST_DEFINE(n);
#define PINCTRL_INIT(n) .pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n),
#else
#define PINCTRL_DEFINE(n)
#define PINCTRL_INIT(n)
#endif /* CONFIG_PINCTRL */
#if defined(CONFIG_RESET)
#define RESET_INIT(n) \
IF_ENABLED(DT_INST_NODE_HAS_PROP(0, resets), (.reset = RESET_DT_SPEC_INST_GET(n),))
#else
#define RESET_INIT(n)
#endif
#define CLOCK_INIT(n) \
COND_CODE_1(DT_NODE_HAS_COMPAT(DT_INST_CLOCKS_CTLR(n), fixed_clock), (), \
(.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_id = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, \
COMPAT_SPECIFIC_CLOCK_CTLR_SUBSYS_CELL(n)),))
#define ARM_PL011_DEFINE(n) \
static inline int pwr_on_arm_pl011_##n(void) \
{ \
return 0; \
} \
static inline int clk_enable_arm_pl011_##n(const struct device *dev, uint32_t clk) \
{ \
return 0; \
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
void pl011_isr(const struct device *dev)
{
struct pl011_data *data = dev->data;
/* Verify if the callback has been registered */
if (data->irq_cb) {
data->irq_cb(dev, data->irq_cb_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define PL011_IRQ_CONFIG_FUNC_BODY(n, prop, i) \
{ \
IRQ_CONNECT(DT_IRQ_BY_IDX(n, i, irq), \
DT_IRQ_BY_IDX(n, i, priority), \
pl011_isr, \
DEVICE_DT_GET(n), \
0); \
irq_enable(DT_IRQ_BY_IDX(n, i, irq)); \
}
#define PL011_CONFIG_PORT(n) \
static void pl011_irq_config_func_##n(const struct device *dev) \
{ \
DT_INST_FOREACH_PROP_ELEM(n, interrupt_names, \
PL011_IRQ_CONFIG_FUNC_BODY) \
}; \
\
static struct pl011_config pl011_cfg_port_##n = { \
DEVICE_MMIO_ROM_INIT(DT_DRV_INST(n)), \
CLOCK_INIT(n) \
PINCTRL_INIT(n) \
.irq_config_func = pl011_irq_config_func_##n, \
.clk_enable_func = COMPAT_SPECIFIC_CLK_ENABLE_FUNC(n), \
.pwr_on_func = COMPAT_SPECIFIC_PWR_ON_FUNC(n), \
};
#else
#define PL011_CONFIG_PORT(n) \
static struct pl011_config pl011_cfg_port_##n = { \
DEVICE_MMIO_ROM_INIT(DT_DRV_INST(n)), \
CLOCK_INIT(n) \
PINCTRL_INIT(n) \
};
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#define PL011_INIT(n) \
PINCTRL_DEFINE(n) \
COMPAT_SPECIFIC_DEFINE(n) \
PL011_CONFIG_PORT(n) \
\
static struct pl011_data pl011_data_port_##n = { \
.uart_cfg = \
{ \
.baudrate = DT_INST_PROP(n, current_speed), \
.parity = UART_CFG_PARITY_NONE, \
.stop_bits = UART_CFG_STOP_BITS_1, \
.data_bits = UART_CFG_DATA_BITS_8, \
.flow_ctrl = DT_INST_PROP(n, hw_flow_control) \
? UART_CFG_FLOW_CTRL_RTS_CTS \
: UART_CFG_FLOW_CTRL_NONE, \
}, \
.clk_freq = \
COND_CODE_1(DT_NODE_HAS_COMPAT(DT_INST_CLOCKS_CTLR(n), fixed_clock), \
(DT_INST_PROP_BY_PHANDLE(n, clocks, clock_frequency)), (0)), \
}; \
\
DEVICE_DT_INST_DEFINE(n, pl011_init, PM_INST_GET(n), &pl011_data_port_##n, \
&pl011_cfg_port_##n, PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \
&pl011_driver_api);
DT_INST_FOREACH_STATUS_OKAY(PL011_INIT)
#ifdef CONFIG_UART_PL011_SBSA
#undef DT_DRV_COMPAT
#define DT_DRV_COMPAT SBSA_COMPAT
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define PL011_SBSA_CONFIG_PORT(n) \
static void pl011_irq_config_func_sbsa_##n(const struct device *dev) \
{ \
DT_INST_FOREACH_PROP_ELEM(n, interrupt_names, \
PL011_IRQ_CONFIG_FUNC_BODY) \
}; \
\
static struct pl011_config pl011_cfg_sbsa_##n = { \
DEVICE_MMIO_ROM_INIT(DT_DRV_INST(n)), \
.irq_config_func = pl011_irq_config_func_sbsa_##n, \
};
#else
#define PL011_SBSA_CONFIG_PORT(n) \
static struct pl011_config pl011_cfg_sbsa_##n = { \
DEVICE_MMIO_ROM_INIT(DT_DRV_INST(n)), \
};
#endif
#define PL011_SBSA_INIT(n) \
PL011_SBSA_CONFIG_PORT(n) \
\
static struct pl011_data pl011_data_sbsa_##n = { \
.sbsa = true, \
}; \
\
DEVICE_DT_INST_DEFINE(n, pl011_init, \
NULL, \
&pl011_data_sbsa_##n, \
&pl011_cfg_sbsa_##n, \
PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, \
&pl011_driver_api);
DT_INST_FOREACH_STATUS_OKAY(PL011_SBSA_INIT)
#endif /* CONFIG_UART_PL011_SBSA */