This fixes deadlock in socket close path. In the scenario: 1. on_cmd_ipd/esp_socket_rx invokes esp_socket_ref_from_link_id and increments refcount. 2. zvfs_close/esp_put locks cond.lock. 3. zvfs_close/esp_put waits on sem_free. 4. on_cmd_ipd/esp_socket_rx waits on cond.lock before esp_socket_unref. 5. sem_free waits on esp_socket_unref for refcount reaching zero. As we detect socket is closing, we can ignore last rx data and escape from the trap. Signed-off-by: Chun-Chieh Li <ccli8@nuvoton.com>
280 lines
6.7 KiB
C
280 lines
6.7 KiB
C
/*
|
|
* Copyright (c) 2019 Tobias Svehagen
|
|
* Copyright (c) 2020 Grinn
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include "esp.h"
|
|
|
|
#include <zephyr/logging/log.h>
|
|
LOG_MODULE_DECLARE(wifi_esp_at, CONFIG_WIFI_LOG_LEVEL);
|
|
|
|
#define RX_NET_PKT_ALLOC_TIMEOUT \
|
|
K_MSEC(CONFIG_WIFI_ESP_AT_RX_NET_PKT_ALLOC_TIMEOUT)
|
|
|
|
struct esp_workq_flush_data {
|
|
struct k_work work;
|
|
struct k_sem sem;
|
|
};
|
|
|
|
struct esp_socket *esp_socket_get(struct esp_data *data,
|
|
struct net_context *context)
|
|
{
|
|
struct esp_socket *sock = data->sockets;
|
|
struct esp_socket *sock_end = sock + ARRAY_SIZE(data->sockets);
|
|
|
|
for (; sock < sock_end; sock++) {
|
|
if (!esp_socket_flags_test_and_set(sock, ESP_SOCK_IN_USE)) {
|
|
/* here we should configure all the stuff needed */
|
|
sock->context = context;
|
|
context->offload_context = sock;
|
|
|
|
sock->connect_cb = NULL;
|
|
sock->recv_cb = NULL;
|
|
memset(&sock->src, 0x0, sizeof(sock->src));
|
|
memset(&sock->dst, 0x0, sizeof(sock->dst));
|
|
|
|
atomic_inc(&sock->refcount);
|
|
|
|
return sock;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int esp_socket_put(struct esp_socket *sock)
|
|
{
|
|
atomic_clear(&sock->flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct esp_socket *esp_socket_ref(struct esp_socket *sock)
|
|
{
|
|
atomic_val_t ref;
|
|
|
|
do {
|
|
ref = atomic_get(&sock->refcount);
|
|
if (!ref) {
|
|
return NULL;
|
|
}
|
|
} while (!atomic_cas(&sock->refcount, ref, ref + 1));
|
|
|
|
return sock;
|
|
}
|
|
|
|
void esp_socket_unref(struct esp_socket *sock)
|
|
{
|
|
atomic_val_t ref;
|
|
|
|
do {
|
|
ref = atomic_get(&sock->refcount);
|
|
if (!ref) {
|
|
return;
|
|
}
|
|
} while (!atomic_cas(&sock->refcount, ref, ref - 1));
|
|
|
|
/* notifies free only on 1-to-0 transition */
|
|
if (ref > 1) {
|
|
return;
|
|
}
|
|
|
|
k_sem_give(&sock->sem_free);
|
|
}
|
|
|
|
void esp_socket_init(struct esp_data *data)
|
|
{
|
|
struct esp_socket *sock;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(data->sockets); ++i) {
|
|
sock = &data->sockets[i];
|
|
sock->idx = i;
|
|
sock->link_id = i;
|
|
atomic_clear(&sock->refcount);
|
|
atomic_clear(&sock->flags);
|
|
k_mutex_init(&sock->lock);
|
|
k_sem_init(&sock->sem_data_ready, 0, 1);
|
|
k_work_init(&sock->connect_work, esp_connect_work);
|
|
k_work_init(&sock->recvdata_work, esp_recvdata_work);
|
|
k_work_init(&sock->close_work, esp_close_work);
|
|
k_work_init(&sock->send_work, esp_send_work);
|
|
k_fifo_init(&sock->tx_fifo);
|
|
}
|
|
}
|
|
|
|
static struct net_pkt *esp_socket_prepare_pkt(struct esp_socket *sock,
|
|
struct net_buf *src,
|
|
size_t offset, size_t len)
|
|
{
|
|
struct esp_data *data = esp_socket_to_dev(sock);
|
|
struct net_buf *frag;
|
|
struct net_pkt *pkt;
|
|
size_t to_copy;
|
|
|
|
pkt = net_pkt_rx_alloc_with_buffer(data->net_iface, len, AF_UNSPEC,
|
|
0, RX_NET_PKT_ALLOC_TIMEOUT);
|
|
if (!pkt) {
|
|
return NULL;
|
|
}
|
|
|
|
frag = src;
|
|
|
|
/* find the right fragment to start copying from */
|
|
while (frag && offset >= frag->len) {
|
|
offset -= frag->len;
|
|
frag = frag->frags;
|
|
}
|
|
|
|
/* traverse the fragment chain until len bytes are copied */
|
|
while (frag && len > 0) {
|
|
to_copy = MIN(len, frag->len - offset);
|
|
if (net_pkt_write(pkt, frag->data + offset, to_copy) != 0) {
|
|
net_pkt_unref(pkt);
|
|
return NULL;
|
|
}
|
|
|
|
/* to_copy is always <= len */
|
|
len -= to_copy;
|
|
frag = frag->frags;
|
|
|
|
/* after the first iteration, this value will be 0 */
|
|
offset = 0;
|
|
}
|
|
|
|
net_pkt_set_context(pkt, sock->context);
|
|
net_pkt_cursor_init(pkt);
|
|
|
|
#if defined(CONFIG_WIFI_ESP_AT_CIPDINFO_USE)
|
|
memcpy(&pkt->remote, &sock->context->remote, sizeof(pkt->remote));
|
|
pkt->family = sock->src.sa_family;
|
|
#endif
|
|
|
|
return pkt;
|
|
}
|
|
|
|
void esp_socket_rx(struct esp_socket *sock, struct net_buf *buf,
|
|
size_t offset, size_t len)
|
|
{
|
|
struct net_pkt *pkt;
|
|
atomic_val_t flags;
|
|
|
|
flags = esp_socket_flags(sock);
|
|
|
|
#ifdef CONFIG_WIFI_ESP_AT_PASSIVE_MODE
|
|
/* In Passive Receive mode, ESP modem will buffer rx data and make it still
|
|
* available even though the peer has closed the connection.
|
|
*/
|
|
if (!(flags & ESP_SOCK_CONNECTED) &&
|
|
!(flags & ESP_SOCK_CLOSE_PENDING)) {
|
|
#else
|
|
if (!(flags & ESP_SOCK_CONNECTED) ||
|
|
(flags & ESP_SOCK_CLOSE_PENDING)) {
|
|
#endif
|
|
LOG_DBG("Received data on closed link %d", sock->link_id);
|
|
return;
|
|
}
|
|
|
|
pkt = esp_socket_prepare_pkt(sock, buf, offset, len);
|
|
if (!pkt) {
|
|
LOG_ERR("Failed to get net_pkt: len %zu", len);
|
|
if (esp_socket_type(sock) == SOCK_STREAM) {
|
|
if (!esp_socket_flags_test_and_set(sock,
|
|
ESP_SOCK_CLOSE_PENDING)) {
|
|
esp_socket_work_submit(sock, &sock->close_work);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_SOCKETS
|
|
/* We need to claim the net_context mutex here so that the ordering of
|
|
* net_context and socket mutex claims matches the TX code path. Failure
|
|
* to do so can lead to deadlocks.
|
|
*/
|
|
/* In the close path, we will meet deadlock in the scenario:
|
|
* 1. on_cmd_ipd/esp_socket_rx invokes esp_socket_ref_from_link_id
|
|
* and increments refcount.
|
|
* 2. zvfs_close/esp_put locks cond.lock.
|
|
* 3. zvfs_close/esp_put waits on sem_free.
|
|
* 4. on_cmd_ipd/esp_socket_rx waits on cond.lock before esp_socket_unref.
|
|
* 5. sem_free waits on esp_socket_unref for refcount reaching zero.
|
|
*/
|
|
if (sock->context->cond.lock) {
|
|
int ret = -EAGAIN;
|
|
|
|
/*
|
|
* If the socket is closing, we can ignore the packet and won't
|
|
* trap in deadlock.
|
|
*/
|
|
while (atomic_get(&sock->refcount) > 1 && ret == -EAGAIN) {
|
|
ret = k_mutex_lock(sock->context->cond.lock, K_SECONDS(1));
|
|
}
|
|
if (ret != 0) {
|
|
/* Discard */
|
|
net_pkt_unref(pkt);
|
|
return;
|
|
}
|
|
}
|
|
#endif /* CONFIG_NET_SOCKETS */
|
|
k_mutex_lock(&sock->lock, K_FOREVER);
|
|
if (sock->recv_cb) {
|
|
sock->recv_cb(sock->context, pkt, NULL, NULL,
|
|
0, sock->recv_user_data);
|
|
k_sem_give(&sock->sem_data_ready);
|
|
} else {
|
|
/* Discard */
|
|
net_pkt_unref(pkt);
|
|
}
|
|
k_mutex_unlock(&sock->lock);
|
|
#ifdef CONFIG_NET_SOCKETS
|
|
if (sock->context->cond.lock) {
|
|
k_mutex_unlock(sock->context->cond.lock);
|
|
}
|
|
#endif /* CONFIG_NET_SOCKETS */
|
|
}
|
|
|
|
void esp_socket_close(struct esp_socket *sock)
|
|
{
|
|
struct esp_data *dev = esp_socket_to_dev(sock);
|
|
char cmd_buf[sizeof("AT+CIPCLOSE=000")];
|
|
int ret;
|
|
|
|
snprintk(cmd_buf, sizeof(cmd_buf), "AT+CIPCLOSE=%d",
|
|
sock->link_id);
|
|
ret = esp_cmd_send(dev, NULL, 0, cmd_buf, ESP_CMD_TIMEOUT);
|
|
if (ret < 0) {
|
|
/* FIXME:
|
|
* If link doesn't close correctly here, esp_get could
|
|
* allocate a socket with an already open link.
|
|
*/
|
|
LOG_ERR("Failed to close link %d, ret %d",
|
|
sock->link_id, ret);
|
|
}
|
|
}
|
|
|
|
static void esp_workq_flush_work(struct k_work *work)
|
|
{
|
|
struct esp_workq_flush_data *flush =
|
|
CONTAINER_OF(work, struct esp_workq_flush_data, work);
|
|
|
|
k_sem_give(&flush->sem);
|
|
}
|
|
|
|
void esp_socket_workq_stop_and_flush(struct esp_socket *sock)
|
|
{
|
|
struct esp_workq_flush_data flush;
|
|
|
|
k_work_init(&flush.work, esp_workq_flush_work);
|
|
k_sem_init(&flush.sem, 0, 1);
|
|
|
|
k_mutex_lock(&sock->lock, K_FOREVER);
|
|
esp_socket_flags_set(sock, ESP_SOCK_WORKQ_STOPPED);
|
|
__esp_socket_work_submit(sock, &flush.work);
|
|
k_mutex_unlock(&sock->lock);
|
|
|
|
k_sem_take(&flush.sem, K_FOREVER);
|
|
}
|