Changes name of folder from tensorflow to tflite-micro and updates docs to reference TensorFlow Lite Micro specifically instead of TensorFlow. Signed-off-by: Lauren Murphy <lauren.murphy@intel.com>
79 lines
3.0 KiB
Python
79 lines
3.0 KiB
Python
# Lint as: python3
|
|
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Test for train.py."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from train import build_cnn
|
|
from train import build_lstm
|
|
from train import load_data
|
|
from train import reshape_function
|
|
|
|
|
|
class TestTrain(unittest.TestCase):
|
|
|
|
def setUp(self): # pylint: disable=g-missing-super-call
|
|
self.seq_length = 128
|
|
self.train_len, self.train_data, self.valid_len, self.valid_data, \
|
|
self.test_len, self.test_data = \
|
|
load_data("./data/train", "./data/valid", "./data/test",
|
|
self.seq_length)
|
|
|
|
def test_load_data(self):
|
|
self.assertIsInstance(self.train_data, tf.data.Dataset)
|
|
self.assertIsInstance(self.valid_data, tf.data.Dataset)
|
|
self.assertIsInstance(self.test_data, tf.data.Dataset)
|
|
|
|
def test_build_net(self):
|
|
cnn, cnn_path = build_cnn(self.seq_length)
|
|
lstm, lstm_path = build_lstm(self.seq_length)
|
|
cnn_data = np.random.rand(60, 128, 3, 1)
|
|
lstm_data = np.random.rand(60, 128, 3)
|
|
cnn_prob = cnn(tf.constant(cnn_data, dtype="float32")).numpy()
|
|
lstm_prob = lstm(tf.constant(lstm_data, dtype="float32")).numpy()
|
|
self.assertIsInstance(cnn, tf.keras.Sequential)
|
|
self.assertIsInstance(lstm, tf.keras.Sequential)
|
|
self.assertEqual(cnn_path, "./netmodels/CNN")
|
|
self.assertEqual(lstm_path, "./netmodels/LSTM")
|
|
self.assertEqual(cnn_prob.shape, (60, 4))
|
|
self.assertEqual(lstm_prob.shape, (60, 4))
|
|
|
|
def test_reshape_function(self):
|
|
for data, label in self.train_data:
|
|
original_data_shape = data.numpy().shape
|
|
original_label_shape = label.numpy().shape
|
|
break
|
|
self.train_data = self.train_data.map(reshape_function)
|
|
for data, label in self.train_data:
|
|
reshaped_data_shape = data.numpy().shape
|
|
reshaped_label_shape = label.numpy().shape
|
|
break
|
|
self.assertEqual(
|
|
reshaped_data_shape,
|
|
(int(original_data_shape[0] * original_data_shape[1] / 3), 3, 1))
|
|
self.assertEqual(reshaped_label_shape, original_label_shape)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|