Changes name of folder from tensorflow to tflite-micro and updates docs to reference TensorFlow Lite Micro specifically instead of TensorFlow. Signed-off-by: Lauren Murphy <lauren.murphy@intel.com>
76 lines
2.8 KiB
Python
76 lines
2.8 KiB
Python
# Lint as: python3
|
|
# coding=utf-8
|
|
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Split data into train, validation and test dataset according to person.
|
|
|
|
That is, use some people's data as train, some other people's data as
|
|
validation, and the rest ones' data as test. These data would be saved
|
|
separately under "/person_split".
|
|
|
|
It will generate new files with the following structure:
|
|
├──person_split
|
|
│ ├── test
|
|
│ ├── train
|
|
│ └──valid
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import random
|
|
from data_split import read_data
|
|
from data_split import write_data
|
|
|
|
|
|
def person_split(whole_data, train_names, valid_names, test_names):
|
|
"""Split data by person."""
|
|
random.seed(30)
|
|
random.shuffle(whole_data)
|
|
train_data = []
|
|
valid_data = []
|
|
test_data = []
|
|
for idx, data in enumerate(whole_data): # pylint: disable=unused-variable
|
|
if data["name"] in train_names:
|
|
train_data.append(data)
|
|
elif data["name"] in valid_names:
|
|
valid_data.append(data)
|
|
elif data["name"] in test_names:
|
|
test_data.append(data)
|
|
print("train_length:" + str(len(train_data)))
|
|
print("valid_length:" + str(len(valid_data)))
|
|
print("test_length:" + str(len(test_data)))
|
|
return train_data, valid_data, test_data
|
|
|
|
|
|
if __name__ == "__main__":
|
|
data = read_data("./data/complete_data")
|
|
train_names = [
|
|
"hyw", "shiyun", "tangsy", "dengyl", "jiangyh", "xunkai", "negative3",
|
|
"negative4", "negative5", "negative6"
|
|
]
|
|
valid_names = ["lsj", "pengxl", "negative2", "negative7"]
|
|
test_names = ["liucx", "zhangxy", "negative1", "negative8"]
|
|
train_data, valid_data, test_data = person_split(data, train_names,
|
|
valid_names, test_names)
|
|
if not os.path.exists("./person_split"):
|
|
os.makedirs("./person_split")
|
|
write_data(train_data, "./person_split/train")
|
|
write_data(valid_data, "./person_split/valid")
|
|
write_data(test_data, "./person_split/test")
|