Changes name of folder from tensorflow to tflite-micro and updates docs to reference TensorFlow Lite Micro specifically instead of TensorFlow. Signed-off-by: Lauren Murphy <lauren.murphy@intel.com>
107 lines
4.5 KiB
Python
107 lines
4.5 KiB
Python
# Lint as: python3
|
|
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
# pylint: disable=g-bad-import-order
|
|
|
|
"""Load data from the specified paths and format them for training."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import json
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from data_augmentation import augment_data
|
|
|
|
LABEL_NAME = "gesture"
|
|
DATA_NAME = "accel_ms2_xyz"
|
|
|
|
|
|
class DataLoader(object):
|
|
"""Loads data and prepares for training."""
|
|
|
|
def __init__(self, train_data_path, valid_data_path, test_data_path,
|
|
seq_length):
|
|
self.dim = 3
|
|
self.seq_length = seq_length
|
|
self.label2id = {"wing": 0, "ring": 1, "slope": 2, "negative": 3}
|
|
self.train_data, self.train_label, self.train_len = self.get_data_file(
|
|
train_data_path, "train")
|
|
self.valid_data, self.valid_label, self.valid_len = self.get_data_file(
|
|
valid_data_path, "valid")
|
|
self.test_data, self.test_label, self.test_len = self.get_data_file(
|
|
test_data_path, "test")
|
|
|
|
def get_data_file(self, data_path, data_type): # pylint: disable=no-self-use
|
|
"""Get train, valid and test data from files."""
|
|
data = []
|
|
label = []
|
|
with open(data_path, "r") as f:
|
|
lines = f.readlines()
|
|
for idx, line in enumerate(lines): # pylint: disable=unused-variable
|
|
dic = json.loads(line)
|
|
data.append(dic[DATA_NAME])
|
|
label.append(dic[LABEL_NAME])
|
|
if data_type == "train":
|
|
data, label = augment_data(data, label)
|
|
length = len(label)
|
|
print(data_type + "_data_length:" + str(length))
|
|
return data, label, length
|
|
|
|
def pad(self, data, seq_length, dim): # pylint: disable=no-self-use
|
|
"""Get neighbour padding."""
|
|
noise_level = 20
|
|
padded_data = []
|
|
# Before- Neighbour padding
|
|
tmp_data = (np.random.rand(seq_length, dim) - 0.5) * noise_level + data[0]
|
|
tmp_data[(seq_length -
|
|
min(len(data), seq_length)):] = data[:min(len(data), seq_length)]
|
|
padded_data.append(tmp_data)
|
|
# After- Neighbour padding
|
|
tmp_data = (np.random.rand(seq_length, dim) - 0.5) * noise_level + data[-1]
|
|
tmp_data[:min(len(data), seq_length)] = data[:min(len(data), seq_length)]
|
|
padded_data.append(tmp_data)
|
|
return padded_data
|
|
|
|
def format_support_func(self, padded_num, length, data, label):
|
|
"""Support function for format.(Helps format train, valid and test.)"""
|
|
# Add 2 padding, initialize data and label
|
|
length *= padded_num
|
|
features = np.zeros((length, self.seq_length, self.dim))
|
|
labels = np.zeros(length)
|
|
# Get padding for train, valid and test
|
|
for idx, (data, label) in enumerate(zip(data, label)): # pylint: disable=redefined-argument-from-local
|
|
padded_data = self.pad(data, self.seq_length, self.dim)
|
|
for num in range(padded_num):
|
|
features[padded_num * idx + num] = padded_data[num]
|
|
labels[padded_num * idx + num] = self.label2id[label]
|
|
# Turn into tf.data.Dataset
|
|
dataset = tf.data.Dataset.from_tensor_slices(
|
|
(features, labels.astype("int32")))
|
|
return length, dataset
|
|
|
|
def format(self):
|
|
"""Format data(including padding, etc.) and get the dataset for the model."""
|
|
padded_num = 2
|
|
self.train_len, self.train_data = self.format_support_func(
|
|
padded_num, self.train_len, self.train_data, self.train_label)
|
|
self.valid_len, self.valid_data = self.format_support_func(
|
|
padded_num, self.valid_len, self.valid_data, self.valid_label)
|
|
self.test_len, self.test_data = self.format_support_func(
|
|
padded_num, self.test_len, self.test_data, self.test_label)
|