zephyr/kernel/timeout.c
Andy Ross 7617371ecc kernel/timeout: Clamp ticks argument to lower bound
Our funny convention holds that passing ticks==1 to _add_timeout()
means "at the next tick".  But that means that 1, 0, and all negative
numbers are expected to behave the same.  In ticked mode, that's fine
because it will, after all, expire at the next tick.

But in tickless, the next announcement may be for several ticks, and
that zero will appear to expire "before" the next tick in the
consumption loop.

Make sure all "next tick" expirations look the same.

Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2018-10-16 15:03:10 -04:00

244 lines
4.3 KiB
C

/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <timeout_q.h>
#include <drivers/system_timer.h>
#include <sys_clock.h>
#include <spinlock.h>
#include <ksched.h>
#include <syscall_handler.h>
#define LOCKED(lck) for (k_spinlock_key_t __i = {}, \
__key = k_spin_lock(lck); \
!__i.key; \
k_spin_unlock(lck, __key), __i.key = 1)
static u64_t curr_tick;
static sys_dlist_t timeout_list = SYS_DLIST_STATIC_INIT(&timeout_list);
static struct k_spinlock timeout_lock;
static bool can_wait_forever;
/* Cycles left to process in the currently-executing z_clock_announce() */
static int announce_remaining;
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
int z_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
#endif
static struct _timeout *first(void)
{
sys_dnode_t *t = sys_dlist_peek_head(&timeout_list);
return t == NULL ? NULL : CONTAINER_OF(t, struct _timeout, node);
}
static struct _timeout *next(struct _timeout *t)
{
sys_dnode_t *n = sys_dlist_peek_next(&timeout_list, &t->node);
return n == NULL ? NULL : CONTAINER_OF(n, struct _timeout, node);
}
static void remove(struct _timeout *t)
{
if (next(t) != NULL) {
next(t)->dticks += t->dticks;
}
sys_dlist_remove(&t->node);
t->dticks = _INACTIVE;
}
static s32_t elapsed(void)
{
return announce_remaining == 0 ? z_clock_elapsed() : 0;
}
void _add_timeout(struct _timeout *to, _timeout_func_t fn, s32_t ticks)
{
__ASSERT(to->dticks < 0, "");
to->fn = fn;
ticks = max(1, ticks);
LOCKED(&timeout_lock) {
struct _timeout *t;
to->dticks = ticks + elapsed();
for (t = first(); t != NULL; t = next(t)) {
__ASSERT(t->dticks >= 0, "");
if (t->dticks > to->dticks) {
t->dticks -= to->dticks;
sys_dlist_insert_before(&timeout_list,
&t->node, &to->node);
break;
}
to->dticks -= t->dticks;
}
if (t == NULL) {
sys_dlist_append(&timeout_list, &to->node);
}
}
z_clock_set_timeout(_get_next_timeout_expiry(), false);
}
int _abort_timeout(struct _timeout *to)
{
int ret = _INACTIVE;
LOCKED(&timeout_lock) {
if (to->dticks != _INACTIVE) {
remove(to);
ret = 0;
}
}
return ret;
}
s32_t z_timeout_remaining(struct _timeout *to)
{
s32_t ticks = 0;
if (to->dticks == _INACTIVE) {
return 0;
}
LOCKED(&timeout_lock) {
for (struct _timeout *t = first(); t != NULL; t = next(t)) {
ticks += t->dticks;
if (to == t) {
break;
}
}
}
return ticks;
}
void z_clock_announce(s32_t ticks)
{
struct _timeout *t = NULL;
#ifdef CONFIG_TIMESLICING
z_time_slice(ticks);
#endif
announce_remaining = ticks;
while (true) {
LOCKED(&timeout_lock) {
t = first();
if (t != NULL) {
if (t->dticks <= announce_remaining) {
announce_remaining -= t->dticks;
curr_tick += t->dticks;
t->dticks = 0;
remove(t);
} else {
t->dticks -= announce_remaining;
t = NULL;
}
}
}
if (t == NULL) {
break;
}
t->fn(t);
}
LOCKED(&timeout_lock) {
curr_tick += announce_remaining;
announce_remaining = 0;
}
z_clock_set_timeout(_get_next_timeout_expiry(), false);
}
s32_t _get_next_timeout_expiry(void)
{
s32_t ret = 0;
int maxw = can_wait_forever ? K_FOREVER : INT_MAX;
LOCKED(&timeout_lock) {
struct _timeout *to = first();
ret = to == NULL ? maxw : max(0, to->dticks - elapsed());
}
#ifdef CONFIG_TIMESLICING
if (_current_cpu->slice_ticks && _current_cpu->slice_ticks < ret) {
ret = _current_cpu->slice_ticks;
}
#endif
return ret;
}
int k_enable_sys_clock_always_on(void)
{
int ret = !can_wait_forever;
can_wait_forever = 0;
return ret;
}
void k_disable_sys_clock_always_on(void)
{
can_wait_forever = 1;
}
s64_t z_tick_get(void)
{
u64_t t = 0;
LOCKED(&timeout_lock) {
t = curr_tick + z_clock_elapsed();
}
return t;
}
u32_t z_tick_get_32(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
return (u32_t)z_tick_get();
#else
return (u32_t)curr_tick;
#endif
}
u32_t _impl_k_uptime_get_32(void)
{
return __ticks_to_ms(z_tick_get_32());
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_uptime_get_32)
{
return _impl_k_uptime_get_32();
}
#endif
s64_t _impl_k_uptime_get(void)
{
return __ticks_to_ms(z_tick_get());
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_uptime_get, ret_p)
{
u64_t *ret = (u64_t *)ret_p;
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(ret, sizeof(*ret)));
*ret = _impl_k_uptime_get();
return 0;
}
#endif