zephyr/include/device.h
Peter Bigot 219a3ca96d device: provide internal access to static device array
Device objects in Zephyr are currently placed into an array by linker
scripts, making it easy to iterate over all devices if the array
address and size can be obtained.  This has applications in device
power management, but the existing API for this was available only
when that feature was enabled.  It also uses a signed type to hold the
device count.

Provide a new API that is generally available, but marked as internal
since normally applications should not iterate over all devices.  Mark
the PM API approach deprecated.

Signed-off-by: Peter Bigot <peter.bigot@nordicsemi.no>
2020-06-23 13:27:14 +02:00

586 lines
18 KiB
C

/*
* Copyright (c) 2015 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef ZEPHYR_INCLUDE_DEVICE_H_
#define ZEPHYR_INCLUDE_DEVICE_H_
/**
* @brief Device Driver APIs
* @defgroup io_interfaces Device Driver APIs
* @{
* @}
*/
/**
* @brief Device Model APIs
* @defgroup device_model Device Model APIs
* @{
*/
#include <init.h>
#ifdef __cplusplus
extern "C" {
#endif
#define Z_DEVICE_MAX_NAME_LEN 48
/**
* @def DEVICE_NAME_GET
*
* @brief Expands to the full name of a global device object
*
* @details Return the full name of a device object symbol created by
* DEVICE_DEFINE(), using the dev_name provided to DEVICE_DEFINE().
*
* It is meant to be used for declaring extern symbols pointing on device
* objects before using the DEVICE_GET macro to get the device object.
*
* @param name The same as dev_name provided to DEVICE_DEFINE()
*
* @return The expanded name of the device object created by DEVICE_DEFINE()
*/
#define DEVICE_NAME_GET(name) (_CONCAT(__device_, name))
/**
* @def SYS_DEVICE_DEFINE
*
* @brief Run an initialization function at boot at specified priority,
* and define device PM control function.
*
* @details Invokes DEVICE_DEFINE() with no power management support
* (@p pm_control_fn), no API (@p api), and a device name derived from
* the @p init_fn name (@p dev_name).
*/
#define SYS_DEVICE_DEFINE(drv_name, init_fn, pm_control_fn, level, prio) \
DEVICE_DEFINE(Z_SYS_NAME(init_fn), drv_name, init_fn, \
pm_control_fn, \
NULL, NULL, level, prio, NULL)
/**
* @def DEVICE_INIT
*
* @brief Invoke DEVICE_DEFINE() with no power management support (@p
* pm_control_fn) and no API (@p api).
*/
#define DEVICE_INIT(dev_name, drv_name, init_fn, \
data, cfg_info, level, prio) \
DEVICE_DEFINE(dev_name, drv_name, init_fn, \
device_pm_control_nop, \
data, cfg_info, level, prio, NULL)
/**
* @def DEVICE_AND_API_INIT
*
* @brief Invoke DEVICE_DEFINE() with no power management support (@p
* pm_control_fn).
*/
#define DEVICE_AND_API_INIT(dev_name, drv_name, init_fn, \
data, cfg_info, level, prio, api) \
DEVICE_DEFINE(dev_name, drv_name, init_fn, \
device_pm_control_nop, \
data, cfg_info, level, prio, api)
/**
* @def DEVICE_DEFINE
*
* @brief Create device object and set it up for boot time initialization,
* with the option to device_pm_control. In case of Device Idle Power
* Management is enabled, make sure the device is in suspended state after
* initialization.
*
* @details This macro defines a device object that is automatically
* configured by the kernel during system initialization. Note that
* devices set up with this macro will not be accessible from user mode
* since the API is not specified; whenever possible, use DEVICE_AND_API_INIT
* instead.
*
* @param dev_name Device name. This must be less than Z_DEVICE_MAX_NAME_LEN
* characters in order to be looked up from user mode with device_get_binding().
*
* @param drv_name The name this instance of the driver exposes to
* the system.
*
* @param init_fn Address to the init function of the driver.
*
* @param pm_control_fn Pointer to device_pm_control function.
* Can be empty function (device_pm_control_nop) if not implemented.
*
* @param data Pointer to the device's private data.
*
* @param cfg_info The address to the structure containing the
* configuration information for this instance of the driver.
*
* @param level The initialization level. See SYS_INIT() for
* details.
*
* @param prio Priority within the selected initialization level. See
* SYS_INIT() for details.
*
* @param api Provides an initial pointer to the API function struct
* used by the driver. Can be NULL.
*/
#define DEVICE_DEFINE(dev_name, drv_name, init_fn, pm_control_fn, \
data, cfg_info, level, prio, api) \
Z_DEVICE_DEFINE_PM(dev_name) \
static Z_DECL_ALIGN(struct device) \
DEVICE_NAME_GET(dev_name) __used \
__attribute__((__section__(".device_" #level STRINGIFY(prio)))) = { \
.name = drv_name, \
.config_info = (cfg_info), \
.driver_api = (api), \
.driver_data = (data), \
Z_DEVICE_DEFINE_PM_INIT(dev_name, pm_control_fn) \
}; \
Z_INIT_ENTRY_DEFINE(_CONCAT(__device_, dev_name), init_fn, \
(&_CONCAT(__device_, dev_name)), level, prio)
/**
* @def DEVICE_GET
*
* @brief Obtain a pointer to a device object by name
*
* @details Return the address of a device object created by
* DEVICE_INIT(), using the dev_name provided to DEVICE_INIT().
*
* @param name The same as dev_name provided to DEVICE_INIT()
*
* @return A pointer to the device object created by DEVICE_INIT()
*/
#define DEVICE_GET(name) (&DEVICE_NAME_GET(name))
/** @def DEVICE_DECLARE
*
* @brief Declare a static device object
*
* This macro can be used at the top-level to declare a device, such
* that DEVICE_GET() may be used before the full declaration in
* DEVICE_INIT().
*
* This is often useful when configuring interrupts statically in a
* device's init or per-instance config function, as the init function
* itself is required by DEVICE_INIT() and use of DEVICE_GET()
* inside it creates a circular dependency.
*
* @param name Device name
*/
#define DEVICE_DECLARE(name) static struct device DEVICE_NAME_GET(name)
typedef void (*device_pm_cb)(struct device *dev,
int status, void *context, void *arg);
/**
* @brief Device PM info
*
* @param dev pointer to device structure
* @param lock lock to synchronize the get/put operations
* @param enable device pm enable flag
* @param usage device usage count
* @param fsm_state device idle internal power state
* @param event event object to listen to the sync request events
* @param signal signal to notify the Async API callers
*/
struct device_pm {
struct device *dev;
struct k_sem lock;
bool enable;
atomic_t usage;
atomic_t fsm_state;
struct k_work work;
struct k_poll_event event;
struct k_poll_signal signal;
};
/**
* @brief Runtime device structure (in memory) per driver instance
*
* @param name name of the device
* @param init init function for the driver
* @param config_info address of driver instance config information
* @param device_config Build time config information
* @param driver_api pointer to structure containing the API functions for
* the device type.
* @param driver_data driver instance data. For driver use only
*/
struct device {
const char *name;
const void *config_info;
const void *driver_api;
void * const driver_data;
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
int (*device_pm_control)(struct device *device, uint32_t command,
void *context, device_pm_cb cb, void *arg);
struct device_pm * const pm;
#endif
};
/**
* @brief Retrieve the device structure for a driver by name
*
* @details Device objects are created via the DEVICE_INIT() macro and
* placed in memory by the linker. If a driver needs to bind to another driver
* it can use this function to retrieve the device structure of the lower level
* driver by the name the driver exposes to the system.
*
* @param name device name to search for.
*
* @return pointer to device structure; NULL if not found or cannot be used.
*/
__syscall struct device *device_get_binding(const char *name);
/** @brief Get access to the static array of static devices.
*
* @param devices where to store the pointer to the array of
* statically allocated devices. The array must not be mutated
* through this pointer.
*
* @return the number of statically allocated devices.
*/
size_t z_device_get_all_static(struct device **devices);
/**
* @}
*/
/**
* @brief Device Power Management APIs
* @defgroup device_power_management_api Device Power Management APIs
* @ingroup power_management_api
* @{
*/
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
/** @def DEVICE_PM_ACTIVE_STATE
*
* @brief device is in ACTIVE power state
*
* @details Normal operation of the device. All device context is retained.
*/
#define DEVICE_PM_ACTIVE_STATE 1
/** @def DEVICE_PM_LOW_POWER_STATE
*
* @brief device is in LOW power state
*
* @details Device context is preserved by the HW and need not be
* restored by the driver.
*/
#define DEVICE_PM_LOW_POWER_STATE 2
/** @def DEVICE_PM_SUSPEND_STATE
*
* @brief device is in SUSPEND power state
*
* @details Most device context is lost by the hardware.
* Device drivers must save and restore or reinitialize any context
* lost by the hardware
*/
#define DEVICE_PM_SUSPEND_STATE 3
/** @def DEVICE_PM_FORCE_SUSPEND_STATE
*
* @brief device is in force SUSPEND power state
*
* @details Driver puts the device in suspended state after
* completing the ongoing transactions and will not process any
* queued work or will not take any new requests for processing.
* Most device context is lost by the hardware. Device drivers must
* save and restore or reinitialize any context lost by the hardware.
*/
#define DEVICE_PM_FORCE_SUSPEND_STATE 4
/** @def DEVICE_PM_OFF_STATE
*
* @brief device is in OFF power state
*
* @details - Power has been fully removed from the device.
* The device context is lost when this state is entered, so the OS
* software will reinitialize the device when powering it back on
*/
#define DEVICE_PM_OFF_STATE 5
/* Constants defining support device power commands */
#define DEVICE_PM_SET_POWER_STATE 1
#define DEVICE_PM_GET_POWER_STATE 2
#endif /* CONFIG_DEVICE_POWER_MANAGEMENT */
/**
* @brief Get name of device PM state
*
* @param state State id which name should be returned
*/
const char *device_pm_state_str(uint32_t state);
/**
* @brief Indicate that the device is in the middle of a transaction
*
* Called by a device driver to indicate that it is in the middle of a
* transaction.
*
* @param busy_dev Pointer to device structure of the driver instance.
*/
void device_busy_set(struct device *busy_dev);
/**
* @brief Indicate that the device has completed its transaction
*
* Called by a device driver to indicate the end of a transaction.
*
* @param busy_dev Pointer to device structure of the driver instance.
*/
void device_busy_clear(struct device *busy_dev);
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
/*
* Device PM functions
*/
/**
* @brief No-op function to initialize unimplemented hook
*
* This function should be used to initialize device hook
* for which a device has no PM operations.
*
* @param unused_device Unused
* @param unused_ctrl_command Unused
* @param unused_context Unused
* @param cb Unused
* @param unused_arg Unused
*
* @retval -ENOTSUP for all operations.
*/
int device_pm_control_nop(struct device *unused_device,
uint32_t unused_ctrl_command,
void *unused_context,
device_pm_cb cb,
void *unused_arg);
/**
* @brief Call the set power state function of a device
*
* Called by the application or power management service to let the device do
* required operations when moving to the required power state
* Note that devices may support just some of the device power states
* @param device Pointer to device structure of the driver instance.
* @param device_power_state Device power state to be set
* @param cb Callback function to notify device power status
* @param arg Caller passed argument to callback function
*
* @retval 0 If successful in queuing the request or changing the state.
* @retval Errno Negative errno code if failure. Callback will not be called.
*/
static inline int device_set_power_state(struct device *device,
uint32_t device_power_state,
device_pm_cb cb, void *arg)
{
return device->device_pm_control(device,
DEVICE_PM_SET_POWER_STATE,
&device_power_state, cb, arg);
}
/**
* @brief Call the get power state function of a device
*
* This function lets the caller know the current device
* power state at any time. This state will be one of the defined
* power states allowed for the devices in that system
*
* @param device pointer to device structure of the driver instance.
* @param device_power_state Device power state to be filled by the device
*
* @retval 0 If successful.
* @retval Errno Negative errno code if failure.
*/
static inline int device_get_power_state(struct device *device,
uint32_t *device_power_state)
{
return device->device_pm_control(device,
DEVICE_PM_GET_POWER_STATE,
device_power_state,
NULL, NULL);
}
/**
* @brief Gets the device structure list array and device count
*
* Called by the Power Manager application to get the list of
* device structures associated with the devices in the system.
* The PM app would use this list to create its own sorted list
* based on the order it wishes to suspend or resume the devices.
*
* @param device_list Pointer to receive the device list array
* @param device_count Pointer to receive the device count
*
* @deprecated in 2.4 release, replace with z_device_get_all_static()
*/
__deprecated static inline void device_list_get(struct device **device_list, int *device_count)
{
*device_count = z_device_get_all_static(device_list);
}
/**
* @brief Check if any device is in the middle of a transaction
*
* Called by an application to see if any device is in the middle
* of a critical transaction that cannot be interrupted.
*
* @retval 0 if no device is busy
* @retval -EBUSY if any device is busy
*/
int device_any_busy_check(void);
/**
* @brief Check if a specific device is in the middle of a transaction
*
* Called by an application to see if a particular device is in the
* middle of a critical transaction that cannot be interrupted.
*
* @param chk_dev Pointer to device structure of the specific device driver
* the caller is interested in.
* @retval 0 if the device is not busy
* @retval -EBUSY if the device is busy
*/
int device_busy_check(struct device *chk_dev);
#ifdef CONFIG_DEVICE_IDLE_PM
/* Device PM FSM states */
enum device_pm_fsm_state {
DEVICE_PM_FSM_STATE_ACTIVE = 1,
DEVICE_PM_FSM_STATE_SUSPENDED,
DEVICE_PM_FSM_STATE_SUSPENDING,
DEVICE_PM_FSM_STATE_RESUMING,
};
/**
* @brief Enable device idle PM
*
* Called by a device driver to enable device idle power management.
* The device might be asynchronously suspended if Idle PM is enabled
* when the device is not use.
*
* @param dev Pointer to device structure of the specific device driver
* the caller is interested in.
*/
void device_pm_enable(struct device *dev);
/**
* @brief Disable device idle PM
*
* Called by a device driver to disable device idle power management.
* The device might be asynchronously resumed if Idle PM is disabled
*
* @param dev Pointer to device structure of the specific device driver
* the caller is interested in.
*/
void device_pm_disable(struct device *dev);
/**
* @brief Call device resume asynchronously based on usage count
*
* Called by a device driver to mark the device as being used.
* This API will asynchronously bring the device to resume state
* if it not already in active state.
*
* @param dev Pointer to device structure of the specific device driver
* the caller is interested in.
* @retval 0 If successfully queued the Async request. If queued,
* the caller need to wait on the poll event linked to device
* pm signal mechanism to know the completion of resume operation.
* @retval Errno Negative errno code if failure.
*/
int device_pm_get(struct device *dev);
/**
* @brief Call device resume synchronously based on usage count
*
* Called by a device driver to mark the device as being used. It
* will bring up or resume the device if it is in suspended state
* based on the device usage count. This call is blocked until the
* device PM state is changed to resume.
*
* @param dev Pointer to device structure of the specific device driver
* the caller is interested in.
* @retval 0 If successful.
* @retval Errno Negative errno code if failure.
*/
int device_pm_get_sync(struct device *dev);
/**
* @brief Call device suspend asynchronously based on usage count
*
* Called by a device driver to mark the device as being released.
* This API asynchronously put the device to suspend state if
* it not already in suspended state.
*
* @param dev Pointer to device structure of the specific device driver
* the caller is interested in.
* @retval 0 If successfully queued the Async request. If queued,
* the caller need to wait on the poll event linked to device pm
* signal mechanism to know the completion of suspend operation.
* @retval Errno Negative errno code if failure.
*/
int device_pm_put(struct device *dev);
/**
* @brief Call device suspend synchronously based on usage count
*
* Called by a device driver to mark the device as being released. It
* will put the device to suspended state if is is in active state
* based on the device usage count. This call is blocked until the
* device PM state is changed to resume.
*
* @param dev Pointer to device structure of the specific device driver
* the caller is interested in.
* @retval 0 If successful.
* @retval Errno Negative errno code if failure.
*/
int device_pm_put_sync(struct device *dev);
#else
static inline void device_pm_enable(struct device *dev) { }
static inline void device_pm_disable(struct device *dev) { }
static inline int device_pm_get(struct device *dev) { return -ENOTSUP; }
static inline int device_pm_get_sync(struct device *dev) { return -ENOTSUP; }
static inline int device_pm_put(struct device *dev) { return -ENOTSUP; }
static inline int device_pm_put_sync(struct device *dev) { return -ENOTSUP; }
#endif
#else
#define device_pm_control_nop(...) NULL
#endif
/**
* @}
*/
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
#define Z_DEVICE_DEFINE_PM(dev_name) \
static struct device_pm _CONCAT(__pm_, dev_name) __used = { \
.usage = ATOMIC_INIT(0), \
.lock = Z_SEM_INITIALIZER( \
_CONCAT(__pm_, dev_name).lock, 1, 1), \
.signal = K_POLL_SIGNAL_INITIALIZER( \
_CONCAT(__pm_, dev_name).signal), \
.event = K_POLL_EVENT_INITIALIZER( \
K_POLL_TYPE_SIGNAL, \
K_POLL_MODE_NOTIFY_ONLY, \
&_CONCAT(__pm_, dev_name).signal), \
};
#define Z_DEVICE_DEFINE_PM_INIT(dev_name, pm_control_fn) \
.device_pm_control = (pm_control_fn), \
.pm = &_CONCAT(__pm_, dev_name),
#else
#define Z_DEVICE_DEFINE_PM(dev_name)
#define Z_DEVICE_DEFINE_PM_INIT(dev_name, pm_control_fn)
#endif
#ifdef __cplusplus
}
#endif
#include <syscalls/device.h>
#endif /* ZEPHYR_INCLUDE_DEVICE_H_ */