zephyr/tests/kernel/queue/src/test_queue_contexts.c
Ningx Zhao fa8bc742b8 Test: queue: Add a testcase to test queue
Test point:
1. Any number of threads may wait on an empty FIFO simultaneously.
2. When a data item is added, it is given to the highest priority
thread that has waited longest.

Signed-off-by: Ningx Zhao <ningx.zhao@intel.com>
2021-04-06 10:13:49 -04:00

529 lines
14 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "test_queue.h"
#define STACK_SIZE (512 + CONFIG_TEST_EXTRA_STACKSIZE)
#define LIST_LEN 2
/**TESTPOINT: init via K_QUEUE_DEFINE*/
K_QUEUE_DEFINE(kqueue);
K_HEAP_DEFINE(mem_pool_fail, 8 + 128);
K_HEAP_DEFINE(mem_pool_pass, 64 * 4 + 128);
struct k_queue queue;
static qdata_t data[LIST_LEN];
static qdata_t data_p[LIST_LEN];
static qdata_t data_l[LIST_LEN];
static qdata_t data_sl[LIST_LEN];
static qdata_t *data_append;
static qdata_t *data_prepend;
static K_THREAD_STACK_DEFINE(tstack, STACK_SIZE);
static struct k_thread tdata;
static K_THREAD_STACK_DEFINE(tstack1, STACK_SIZE);
static struct k_thread tdata1;
static K_THREAD_STACK_DEFINE(tstack2, STACK_SIZE);
static struct k_thread tdata2;
static struct k_sem end_sema;
static void tqueue_append(struct k_queue *pqueue)
{
k_queue_insert(pqueue, k_queue_peek_tail(pqueue),
(void *)&data[0]);
for (int i = 1; i < LIST_LEN; i++) {
/**TESTPOINT: queue append */
k_queue_append(pqueue, (void *)&data[i]);
}
for (int i = LIST_LEN - 1; i >= 0; i--) {
/**TESTPOINT: queue prepend */
k_queue_prepend(pqueue, (void *)&data_p[i]);
}
/**TESTPOINT: queue append list*/
static qdata_t *head = &data_l[0], *tail = &data_l[LIST_LEN - 1];
head->snode.next = (sys_snode_t *)tail;
tail->snode.next = NULL;
k_queue_append_list(pqueue, (uint32_t *)head, (uint32_t *)tail);
/**TESTPOINT: queue merge slist*/
sys_slist_t slist;
sys_slist_init(&slist);
sys_slist_append(&slist, (sys_snode_t *)&(data_sl[0].snode));
sys_slist_append(&slist, (sys_snode_t *)&(data_sl[1].snode));
k_queue_merge_slist(pqueue, &slist);
}
static void tqueue_get(struct k_queue *pqueue)
{
void *rx_data;
/*get queue data from "queue_prepend"*/
for (int i = 0; i < LIST_LEN; i++) {
/**TESTPOINT: queue get*/
rx_data = k_queue_get(pqueue, K_NO_WAIT);
zassert_equal(rx_data, (void *)&data_p[i], NULL);
}
/*get queue data from "queue_append"*/
for (int i = 0; i < LIST_LEN; i++) {
/**TESTPOINT: queue get*/
rx_data = k_queue_get(pqueue, K_NO_WAIT);
zassert_equal(rx_data, (void *)&data[i], NULL);
}
/*get queue data from "queue_append_list"*/
for (int i = 0; i < LIST_LEN; i++) {
rx_data = k_queue_get(pqueue, K_NO_WAIT);
zassert_equal(rx_data, (void *)&data_l[i], NULL);
}
/*get queue data from "queue_merge_slist"*/
for (int i = 0; i < LIST_LEN; i++) {
rx_data = k_queue_get(pqueue, K_NO_WAIT);
zassert_equal(rx_data, (void *)&data_sl[i], NULL);
}
}
/*entry of contexts*/
static void tIsr_entry_append(const void *p)
{
tqueue_append((struct k_queue *)p);
}
static void tIsr_entry_get(const void *p)
{
tqueue_get((struct k_queue *)p);
}
static void tThread_entry(void *p1, void *p2, void *p3)
{
tqueue_get((struct k_queue *)p1);
k_sem_give(&end_sema);
}
static void tqueue_thread_thread(struct k_queue *pqueue)
{
k_sem_init(&end_sema, 0, 1);
/**TESTPOINT: thread-thread data passing via queue*/
k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
tThread_entry, pqueue, NULL, NULL,
K_PRIO_PREEMPT(0), 0, K_NO_WAIT);
tqueue_append(pqueue);
k_sem_take(&end_sema, K_FOREVER);
k_thread_abort(tid);
}
static void tqueue_thread_isr(struct k_queue *pqueue)
{
k_sem_init(&end_sema, 0, 1);
/**TESTPOINT: thread-isr data passing via queue*/
irq_offload(tIsr_entry_append, (const void *)pqueue);
tqueue_get(pqueue);
}
static void tqueue_isr_thread(struct k_queue *pqueue)
{
k_sem_init(&end_sema, 0, 1);
/**TESTPOINT: isr-thread data passing via queue*/
tqueue_append(pqueue);
irq_offload(tIsr_entry_get, (const void *)pqueue);
}
/*test cases*/
/**
* @brief Verify data passing between threads using queue
*
* @details Static define and Dynamic define queues,
* Then initialize them.
* Create a new thread to wait for reading data.
* Current thread will append item into queue.
* Verify if rx_data is equal insert-data address.
* Verify queue can be define at compile time.
*
* @ingroup kernel_queue_tests
*
* @see k_queue_init(), k_queue_insert(), k_queue_append()
* K_THREAD_STACK_DEFINE()
*/
void test_queue_thread2thread(void)
{
/**TESTPOINT: init via k_queue_init*/
k_queue_init(&queue);
tqueue_thread_thread(&queue);
/**TESTPOINT: test K_QUEUE_DEFINEed queue*/
tqueue_thread_thread(&kqueue);
}
/**
* @brief Verify data passing between thread and ISR
*
* @details Create a new ISR to insert data
* And current thread is used for getting data
* Verify if the rx_data is equal insert-data address.
* If the received data address is the same as
* the created array, prove that the queue data structures
* are stored within the provided data items.
*
* @ingroup kernel_queue_tests
*
* @see k_queue_init(), k_queue_insert(), k_queue_append()
*/
void test_queue_thread2isr(void)
{
/**TESTPOINT: init via k_queue_init*/
k_queue_init(&queue);
tqueue_thread_isr(&queue);
/**TESTPOINT: test K_QUEUE_DEFINEed queue*/
tqueue_thread_isr(&kqueue);
}
/**
* @brief Verify data passing between ISR and thread
*
* @details Create a new ISR and ready for getting data
* And current thread is used for inserting data
* Verify if the rx_data is equal insert-data address.
*
* @ingroup kernel_queue_tests
*
* @see k_queue_init(), k_queue_insert(), k_queue_get(),
* k_queue_append(), k_queue_remove()
*/
void test_queue_isr2thread(void)
{
/**TESTPOINT: test k_queue_init queue*/
k_queue_init(&queue);
tqueue_isr_thread(&queue);
/**TESTPOINT: test K_QUEUE_DEFINE queue*/
tqueue_isr_thread(&kqueue);
}
static void tThread_get(void *p1, void *p2, void *p3)
{
zassert_true(k_queue_get((struct k_queue *)p1, K_FOREVER) != NULL,
NULL);
k_sem_give(&end_sema);
}
static void tqueue_get_2threads(struct k_queue *pqueue)
{
k_sem_init(&end_sema, 0, 1);
k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
tThread_get, pqueue, NULL, NULL,
K_PRIO_PREEMPT(0), 0, K_NO_WAIT);
k_tid_t tid1 = k_thread_create(&tdata1, tstack1, STACK_SIZE,
tThread_get, pqueue, NULL, NULL,
K_PRIO_PREEMPT(0), 0, K_NO_WAIT);
/* Wait threads to initialize */
k_sleep(K_MSEC(10));
k_queue_append(pqueue, (void *)&data[0]);
k_queue_append(pqueue, (void *)&data[1]);
/* Wait threads to finalize */
k_sem_take(&end_sema, K_FOREVER);
k_sem_take(&end_sema, K_FOREVER);
k_thread_abort(tid);
k_thread_abort(tid1);
}
/**
* @brief Verify k_queue_get()
* @ingroup kernel_queue_tests
* @see k_queue_init(), k_queue_get(),
* k_queue_append(), k_queue_alloc_prepend()
*/
void test_queue_get_2threads(void)
{
/**TESTPOINT: test k_queue_init queue*/
k_queue_init(&queue);
tqueue_get_2threads(&queue);
}
static void tqueue_alloc(struct k_queue *pqueue)
{
k_thread_heap_assign(k_current_get(), NULL);
/* Alloc append without resource pool */
k_queue_alloc_append(pqueue, (void *)&data_append);
/* Insertion fails and alloc returns NOMEM */
zassert_false(k_queue_remove(pqueue, &data_append), NULL);
/* Assign resource pool of lower size */
k_thread_heap_assign(k_current_get(), &mem_pool_fail);
/* Prepend to the queue, but fails because of
* insufficient memory
*/
k_queue_alloc_prepend(pqueue, (void *)&data_prepend);
zassert_false(k_queue_remove(pqueue, &data_prepend), NULL);
/* No element must be present in the queue, as all
* operations failed
*/
zassert_true(k_queue_is_empty(pqueue), NULL);
/* Assign resource pool of sufficient size */
k_thread_heap_assign(k_current_get(), &mem_pool_pass);
zassert_false(k_queue_alloc_prepend(pqueue, (void *)&data_prepend),
NULL);
/* Now queue shouldn't be empty */
zassert_false(k_queue_is_empty(pqueue), NULL);
zassert_true(k_queue_get(pqueue, K_FOREVER) != NULL,
NULL);
}
/**
* @brief Test queue alloc append and prepend
* @ingroup kernel_queue_tests
* @see k_queue_alloc_append(), k_queue_alloc_prepend(),
* z_thread_heap_assign(), k_queue_is_empty(),
* k_queue_get(), k_queue_remove()
*/
void test_queue_alloc(void)
{
/* The mem_pool_fail pool is supposed to be too small to
* succeed any allocations, but in fact with the heap backend
* there's some base minimal memory in there that can be used.
* Make sure it's really truly full.
*/
while (k_heap_alloc(&mem_pool_fail, 1, K_NO_WAIT) != NULL) {
}
k_queue_init(&queue);
tqueue_alloc(&queue);
}
/* Does nothing but read items out of the queue and verify that they
* are non-null. Two such threads will be created.
*/
static void queue_poll_race_consume(void *p1, void *p2, void *p3)
{
struct k_queue *q = p1;
int *count = p2;
while (true) {
zassert_true(k_queue_get(q, K_FOREVER) != NULL, NULL);
*count += 1;
}
}
/* There was a historical race in the queue internals when CONFIG_POLL
* was enabled -- it was possible to wake up a lower priority thread
* with an insert but then steal it with a higher priority thread
* before it got a chance to run, and the lower priority thread would
* then return NULL before its timeout expired.
*/
void test_queue_poll_race(void)
{
int prio = k_thread_priority_get(k_current_get());
static volatile int mid_count, low_count;
k_queue_init(&queue);
k_thread_create(&tdata, tstack, STACK_SIZE,
queue_poll_race_consume,
&queue, (void *)&mid_count, NULL,
prio + 1, 0, K_NO_WAIT);
k_thread_create(&tdata1, tstack1, STACK_SIZE,
queue_poll_race_consume,
&queue, (void *)&low_count, NULL,
prio + 2, 0, K_NO_WAIT);
/* Let them initialize and block */
k_sleep(K_MSEC(10));
/* Insert two items. This will wake up both threads, but the
* higher priority thread (tdata1) might (if CONFIG_POLL)
* consume both. The lower priority thread should stay
* asleep.
*/
k_queue_append(&queue, &data[0]);
k_queue_append(&queue, &data[1]);
zassert_true(low_count == 0, NULL);
zassert_true(mid_count == 0, NULL);
k_sleep(K_MSEC(10));
zassert_true(low_count + mid_count == 2, NULL);
k_thread_abort(&tdata);
k_thread_abort(&tdata1);
}
/**
* @brief Verify that multiple queues can be defined
* simultaneously
*
* @details define multiple queues to verify
* they can work.
*
* @ingroup kernel_queue_tests
*
* @see k_queue_init()
*/
#define QUEUE_NUM 10
void test_multiple_queues(void)
{
/*define multiple queues*/
static struct k_queue queues[QUEUE_NUM];
for (int i = 0; i < QUEUE_NUM; i++) {
k_queue_init(&queues[i]);
/*Indicating that they are working*/
tqueue_append(&queues[i]);
tqueue_get(&queues[i]);
}
}
void user_access_queue_private_data(void *p1, void *p2, void *p3)
{
ztest_set_fault_valid(true);
/* try to access to private kernel data, will happen kernel oops */
k_queue_is_empty(&queue);
}
/**
* @brief Test access kernel object with private data using system call
*
* @details
* - When defining system calls, it is very important to ensure that
* access to the APIs private data is done exclusively through system call
* interfaces. Private kernel data should never be made available to user mode
* threads directly. For example, the k_queue APIs were intentionally not made
* available as they store bookkeeping information about the queue directly
* in the queue buffers which are visible from user mode.
* - Current test makes user thread try to access private kernel data within
* their associated data structures. Kernel will track that system call
* access to these object with the kernel object permission system.
* Current user thread doesn't have permission on it, trying to access
* &pqueue kernel object will happen kernel oops, because current user
* thread doesn't have permission on k_queue object with private kernel data.
*
* @ingroup kernel_memprotect_tests
*/
void test_access_kernel_obj_with_priv_data(void)
{
k_queue_init(&queue);
k_queue_insert(&queue, k_queue_peek_tail(&queue), (void *)&data[0]);
k_thread_create(&tdata, tstack, STACK_SIZE, user_access_queue_private_data,
NULL, NULL, NULL, 0, K_USER, K_NO_WAIT);
k_thread_join(&tdata, K_FOREVER);
}
static void low_prio_wait_for_queue(void *p1, void *p2, void *p3)
{
struct k_queue *q = p1;
uint32_t *ret = NULL;
ret = k_queue_get(q, K_FOREVER);
zassert_true(*ret == 0xccc,
"The low priority thread get the queue data failed lastly");
}
static void high_prio_t1_wait_for_queue(void *p1, void *p2, void *p3)
{
struct k_queue *q = p1;
uint32_t *ret = NULL;
ret = k_queue_get(q, K_FOREVER);
zassert_true(*ret == 0xaaa,
"The highest priority and waited longest get the queue data failed firstly");
}
static void high_prio_t2_wait_for_queue(void *p1, void *p2, void *p3)
{
struct k_queue *q = p1;
uint32_t *ret = NULL;
ret = k_queue_get(q, K_FOREVER);
zassert_true(*ret == 0xbbb,
"The higher priority and waited longer get the queue data failed secondly");
}
/**
* @brief Test multi-threads to get data from a queue.
*
* @details Define three threads, and set a higher priority for two of them,
* and set a lower priority for the last one. Then Add a delay between
* creating the two high priority threads.
* Test point:
* 1. Any number of threads may wait on an empty FIFO simultaneously.
* 2. When a data item is added, it is given to the highest priority
* thread that has waited longest.
*
* @ingroup kernel_queue_tests
*/
void test_queue_multithread_competition(void)
{
int old_prio = k_thread_priority_get(k_current_get());
int prio = 10;
uint32_t test_data[3];
memset(test_data, 0, sizeof(test_data));
k_thread_priority_set(k_current_get(), prio);
k_queue_init(&queue);
zassert_true(k_queue_is_empty(&queue) != 0, " Initializing queue failed");
/* Set up some values */
test_data[0] = 0xAAA;
test_data[1] = 0xBBB;
test_data[2] = 0xCCC;
k_thread_create(&tdata, tstack, STACK_SIZE,
low_prio_wait_for_queue,
&queue, NULL, NULL,
prio + 4, 0, K_NO_WAIT);
k_thread_create(&tdata1, tstack1, STACK_SIZE,
high_prio_t1_wait_for_queue,
&queue, NULL, NULL,
prio + 2, 0, K_NO_WAIT);
/* Make thread tdata and tdata1 wait more time */
k_sleep(K_MSEC(10));
k_thread_create(&tdata2, tstack2, STACK_SIZE,
high_prio_t2_wait_for_queue,
&queue, NULL, NULL,
prio + 2, 0, K_NO_WAIT);
/* Initialize them and block */
k_sleep(K_MSEC(50));
/* Insert some data to wake up thread */
k_queue_append(&queue, &test_data[0]);
k_queue_append(&queue, &test_data[1]);
k_queue_append(&queue, &test_data[2]);
/* Wait for thread exiting */
k_thread_join(&tdata, K_FOREVER);
k_thread_join(&tdata1, K_FOREVER);
k_thread_join(&tdata2, K_FOREVER);
/* Revert priority of the main thread */
k_thread_priority_set(k_current_get(), old_prio);
}